{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "4a403767-f206-4164-8a78-b5e7d31ea71c",
   "metadata": {},
   "source": [
    "# KMeans Clustering"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6f12438d-7927-46d5-9f33-cd99a2598faf",
   "metadata": {},
   "source": [
    "> this notebook made with help from Sam Fielding"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "934aecd4-84aa-45ff-945c-a739ae274f1a",
   "metadata": {},
   "source": [
    "A proof of concept of applying clustering analysis to the data..."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3ba565be-8ef3-46db-9b8c-5bd9817b2dfc",
   "metadata": {},
   "source": [
    "## Environment setup"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "5cc76e35-949a-48ed-b10e-c7ee95e73e12",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Using: /home/ash/code/geomagnetic_datacubes_dev/notebooks/datacube_test.zarr\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import datetime as dt\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import xarray as xr\n",
    "import dask as da\n",
    "from dask.diagnostics import ProgressBar\n",
    "import zarr\n",
    "# import holoviews as hv\n",
    "# import hvplot.xarray\n",
    "import matplotlib.pyplot as plt\n",
    "from tqdm.auto import tqdm\n",
    "from sklearn.cluster import KMeans\n",
    "\n",
    "from src.env import ICOS_FILE\n",
    "\n",
    "TMPDIR = os.getcwd()\n",
    "zarr_store = os.path.join(TMPDIR, \"datacube_test.zarr\")\n",
    "print(\"Using:\", zarr_store)\n",
    "\n",
    "xr.set_options(\n",
    "    display_expand_attrs=False,\n",
    "    display_expand_data_vars=True\n",
    ");"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "52975f85-4a1e-4781-a5ec-f845ef2cb276",
   "metadata": {},
   "source": [
    "## Initialise data to use"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "ff68343f-2c84-4532-9143-f082e337c761",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
       "<defs>\n",
       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "</symbol>\n",
       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "</symbol>\n",
       "</defs>\n",
       "</svg>\n",
       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
       " *\n",
       " */\n",
       "\n",
       ":root {\n",
       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
       "  --xr-background-color: var(--jp-layout-color0, white);\n",
       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
       "}\n",
       "\n",
       "html[theme=dark],\n",
       "body.vscode-dark {\n",
       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
       "  --xr-border-color: #1F1F1F;\n",
       "  --xr-disabled-color: #515151;\n",
       "  --xr-background-color: #111111;\n",
       "  --xr-background-color-row-even: #111111;\n",
       "  --xr-background-color-row-odd: #313131;\n",
       "}\n",
       "\n",
       ".xr-wrap {\n",
       "  display: block !important;\n",
       "  min-width: 300px;\n",
       "  max-width: 700px;\n",
       "}\n",
       "\n",
       ".xr-text-repr-fallback {\n",
       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-header {\n",
       "  padding-top: 6px;\n",
       "  padding-bottom: 6px;\n",
       "  margin-bottom: 4px;\n",
       "  border-bottom: solid 1px var(--xr-border-color);\n",
       "}\n",
       "\n",
       ".xr-header > div,\n",
       ".xr-header > ul {\n",
       "  display: inline;\n",
       "  margin-top: 0;\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-obj-type,\n",
       ".xr-array-name {\n",
       "  margin-left: 2px;\n",
       "  margin-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-obj-type {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-sections {\n",
       "  padding-left: 0 !important;\n",
       "  display: grid;\n",
       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
       "}\n",
       "\n",
       ".xr-section-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-section-item input {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-item input + label {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label {\n",
       "  cursor: pointer;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label:hover {\n",
       "  color: var(--xr-font-color0);\n",
       "}\n",
       "\n",
       ".xr-section-summary {\n",
       "  grid-column: 1;\n",
       "  color: var(--xr-font-color2);\n",
       "  font-weight: 500;\n",
       "}\n",
       "\n",
       ".xr-section-summary > span {\n",
       "  display: inline-block;\n",
       "  padding-left: 0.5em;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in + label:before {\n",
       "  display: inline-block;\n",
       "  content: '►';\n",
       "  font-size: 11px;\n",
       "  width: 15px;\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label:before {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label:before {\n",
       "  content: '▼';\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label > span {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-summary,\n",
       ".xr-section-inline-details {\n",
       "  padding-top: 4px;\n",
       "  padding-bottom: 4px;\n",
       "}\n",
       "\n",
       ".xr-section-inline-details {\n",
       "  grid-column: 2 / -1;\n",
       "}\n",
       "\n",
       ".xr-section-details {\n",
       "  display: none;\n",
       "  grid-column: 1 / -1;\n",
       "  margin-bottom: 5px;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-array-wrap {\n",
       "  grid-column: 1 / -1;\n",
       "  display: grid;\n",
       "  grid-template-columns: 20px auto;\n",
       "}\n",
       "\n",
       ".xr-array-wrap > label {\n",
       "  grid-column: 1;\n",
       "  vertical-align: top;\n",
       "}\n",
       "\n",
       ".xr-preview {\n",
       "  color: var(--xr-font-color3);\n",
       "}\n",
       "\n",
       ".xr-array-preview,\n",
       ".xr-array-data {\n",
       "  padding: 0 5px !important;\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-array-data,\n",
       ".xr-array-in:checked ~ .xr-array-preview {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-array-in:checked ~ .xr-array-data,\n",
       ".xr-array-preview {\n",
       "  display: inline-block;\n",
       "}\n",
       "\n",
       ".xr-dim-list {\n",
       "  display: inline-block !important;\n",
       "  list-style: none;\n",
       "  padding: 0 !important;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list li {\n",
       "  display: inline-block;\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list:before {\n",
       "  content: '(';\n",
       "}\n",
       "\n",
       ".xr-dim-list:after {\n",
       "  content: ')';\n",
       "}\n",
       "\n",
       ".xr-dim-list li:not(:last-child):after {\n",
       "  content: ',';\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-has-index {\n",
       "  font-weight: bold;\n",
       "}\n",
       "\n",
       ".xr-var-list,\n",
       ".xr-var-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-var-item > div,\n",
       ".xr-var-item label,\n",
       ".xr-var-item > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-even);\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-var-item > .xr-var-name:hover span {\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-var-list > li:nth-child(odd) > div,\n",
       ".xr-var-list > li:nth-child(odd) > label,\n",
       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-odd);\n",
       "}\n",
       "\n",
       ".xr-var-name {\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-var-dims {\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-var-dtype {\n",
       "  grid-column: 3;\n",
       "  text-align: right;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-var-preview {\n",
       "  grid-column: 4;\n",
       "}\n",
       "\n",
       ".xr-var-name,\n",
       ".xr-var-dims,\n",
       ".xr-var-dtype,\n",
       ".xr-preview,\n",
       ".xr-attrs dt {\n",
       "  white-space: nowrap;\n",
       "  overflow: hidden;\n",
       "  text-overflow: ellipsis;\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-var-name:hover,\n",
       ".xr-var-dims:hover,\n",
       ".xr-var-dtype:hover,\n",
       ".xr-attrs dt:hover {\n",
       "  overflow: visible;\n",
       "  width: auto;\n",
       "  z-index: 1;\n",
       "}\n",
       "\n",
       ".xr-var-attrs,\n",
       ".xr-var-data {\n",
       "  display: none;\n",
       "  background-color: var(--xr-background-color) !important;\n",
       "  padding-bottom: 5px !important;\n",
       "}\n",
       "\n",
       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
       ".xr-var-data-in:checked ~ .xr-var-data {\n",
       "  display: block;\n",
       "}\n",
       "\n",
       ".xr-var-data > table {\n",
       "  float: right;\n",
       "}\n",
       "\n",
       ".xr-var-name span,\n",
       ".xr-var-data,\n",
       ".xr-attrs {\n",
       "  padding-left: 25px !important;\n",
       "}\n",
       "\n",
       ".xr-attrs,\n",
       ".xr-var-attrs,\n",
       ".xr-var-data {\n",
       "  grid-column: 1 / -1;\n",
       "}\n",
       "\n",
       "dl.xr-attrs {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  display: grid;\n",
       "  grid-template-columns: 125px auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt,\n",
       ".xr-attrs dd {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  float: left;\n",
       "  padding-right: 10px;\n",
       "  width: auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt {\n",
       "  font-weight: normal;\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-attrs dt:hover span {\n",
       "  display: inline-block;\n",
       "  background: var(--xr-background-color);\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-attrs dd {\n",
       "  grid-column: 2;\n",
       "  white-space: pre-wrap;\n",
       "  word-break: break-all;\n",
       "}\n",
       "\n",
       ".xr-icon-database,\n",
       ".xr-icon-file-text2 {\n",
       "  display: inline-block;\n",
       "  vertical-align: middle;\n",
       "  width: 1em;\n",
       "  height: 1.5em !important;\n",
       "  stroke-width: 0;\n",
       "  stroke: currentColor;\n",
       "  fill: currentColor;\n",
       "}\n",
       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
       "Dimensions:  (index: 40962)\n",
       "Coordinates:\n",
       "  * index    (index) int64 0 1 2 3 4 5 6 ... 40956 40957 40958 40959 40960 40961\n",
       "Data variables:\n",
       "    QDLat    (index) float64 -2.911 -4.072 -2.909 -4.439 ... 31.72 -31.72 31.72\n",
       "    MLT      (index) float64 8.382 8.489 8.489 8.416 8.362 ... 0.0 0.0 12.0 12.0</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-ecbd07ef-d840-4c89-a0a1-1af5c3d9469f' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-ecbd07ef-d840-4c89-a0a1-1af5c3d9469f' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>index</span>: 40962</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-5f04198c-f932-4ba4-a1d1-8451ccc49242' class='xr-section-summary-in' type='checkbox'  checked><label for='section-5f04198c-f932-4ba4-a1d1-8451ccc49242' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>index</span></div><div class='xr-var-dims'>(index)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>0 1 2 3 ... 40958 40959 40960 40961</div><input id='attrs-e7774f0a-0283-4142-b21c-1844712df4c7' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-e7774f0a-0283-4142-b21c-1844712df4c7' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-41188c0f-0b83-422c-b5e4-ed205c1a2c0c' class='xr-var-data-in' type='checkbox'><label for='data-41188c0f-0b83-422c-b5e4-ed205c1a2c0c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([    0,     1,     2, ..., 40959, 40960, 40961])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-5ded5cdf-50a2-4315-8374-0f613c54a1b9' class='xr-section-summary-in' type='checkbox'  checked><label for='section-5ded5cdf-50a2-4315-8374-0f613c54a1b9' class='xr-section-summary' >Data variables: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>QDLat</span></div><div class='xr-var-dims'>(index)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-2.911 -4.072 ... -31.72 31.72</div><input id='attrs-b9740eea-7fd8-496e-bb0d-bb6db31cde32' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-b9740eea-7fd8-496e-bb0d-bb6db31cde32' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f8dacb37-0811-43db-bccf-8dca0b57bcd7' class='xr-var-data-in' type='checkbox'><label for='data-f8dacb37-0811-43db-bccf-8dca0b57bcd7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([ -2.91059948,  -4.07163665,  -2.9087703 , ...,  31.71747441,\n",
       "       -31.71747441,  31.71747441])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>MLT</span></div><div class='xr-var-dims'>(index)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>8.382 8.489 8.489 ... 0.0 12.0 12.0</div><input id='attrs-265a9f9c-3ca2-4803-ab07-71d0b13022f0' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-265a9f9c-3ca2-4803-ab07-71d0b13022f0' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b7ee3db3-5311-4819-985a-643485650aa6' class='xr-var-data-in' type='checkbox'><label for='data-b7ee3db3-5311-4819-985a-643485650aa6' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([ 8.38202002,  8.48933828,  8.48940476, ...,  0.        ,\n",
       "       12.        , 12.        ])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-2c8c70f9-0a1a-4eb5-b175-b02b3eb69f21' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-2c8c70f9-0a1a-4eb5-b175-b02b3eb69f21' class='xr-section-summary'  title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
      ],
      "text/plain": [
       "<xarray.Dataset>\n",
       "Dimensions:  (index: 40962)\n",
       "Coordinates:\n",
       "  * index    (index) int64 0 1 2 3 4 5 6 ... 40956 40957 40958 40959 40960 40961\n",
       "Data variables:\n",
       "    QDLat    (index) float64 -2.911 -4.072 -2.909 -4.439 ... 31.72 -31.72 31.72\n",
       "    MLT      (index) float64 8.382 8.489 8.489 8.416 8.362 ... 0.0 0.0 12.0 12.0"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# TODO: Store this information in the datacube directly\n",
    "# Load the coordinates, stored as \"40962\" within the HDF file.\n",
    "gridcoords = pd.read_hdf(ICOS_FILE, key=\"40962\")\n",
    "# gridcoords[\"Latitude\"] = 90 - gridcoords[\"theta\"]\n",
    "# gridcoords[\"Longitude\"] = np.vectorize(lambda x: x if x <= 180 else x - 360)(gridcoords[\"phi\"])\n",
    "gridcoords[\"QDLat\"] = 90 - gridcoords[\"theta\"]\n",
    "gridcoords[\"MLT\"] = gridcoords[\"phi\"]/15\n",
    "gridcoords = gridcoords.to_xarray()\n",
    "gridcoords = gridcoords.drop_vars([\"theta\", \"phi\"])\n",
    "gridcoords"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "4e3ffac5-3303-4e44-9e8a-f12b82578f02",
   "metadata": {},
   "outputs": [],
   "source": [
    "ds = xr.open_dataset(\n",
    "    zarr_store, engine=\"zarr\", chunks=\"auto\"\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "88f75dd6-7388-49eb-a89d-bd7a2b207304",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
       "<defs>\n",
       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "</symbol>\n",
       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "</symbol>\n",
       "</defs>\n",
       "</svg>\n",
       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
       " *\n",
       " */\n",
       "\n",
       ":root {\n",
       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
       "  --xr-background-color: var(--jp-layout-color0, white);\n",
       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
       "}\n",
       "\n",
       "html[theme=dark],\n",
       "body.vscode-dark {\n",
       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
       "  --xr-border-color: #1F1F1F;\n",
       "  --xr-disabled-color: #515151;\n",
       "  --xr-background-color: #111111;\n",
       "  --xr-background-color-row-even: #111111;\n",
       "  --xr-background-color-row-odd: #313131;\n",
       "}\n",
       "\n",
       ".xr-wrap {\n",
       "  display: block !important;\n",
       "  min-width: 300px;\n",
       "  max-width: 700px;\n",
       "}\n",
       "\n",
       ".xr-text-repr-fallback {\n",
       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-header {\n",
       "  padding-top: 6px;\n",
       "  padding-bottom: 6px;\n",
       "  margin-bottom: 4px;\n",
       "  border-bottom: solid 1px var(--xr-border-color);\n",
       "}\n",
       "\n",
       ".xr-header > div,\n",
       ".xr-header > ul {\n",
       "  display: inline;\n",
       "  margin-top: 0;\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-obj-type,\n",
       ".xr-array-name {\n",
       "  margin-left: 2px;\n",
       "  margin-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-obj-type {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-sections {\n",
       "  padding-left: 0 !important;\n",
       "  display: grid;\n",
       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
       "}\n",
       "\n",
       ".xr-section-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-section-item input {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-item input + label {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label {\n",
       "  cursor: pointer;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label:hover {\n",
       "  color: var(--xr-font-color0);\n",
       "}\n",
       "\n",
       ".xr-section-summary {\n",
       "  grid-column: 1;\n",
       "  color: var(--xr-font-color2);\n",
       "  font-weight: 500;\n",
       "}\n",
       "\n",
       ".xr-section-summary > span {\n",
       "  display: inline-block;\n",
       "  padding-left: 0.5em;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in + label:before {\n",
       "  display: inline-block;\n",
       "  content: '►';\n",
       "  font-size: 11px;\n",
       "  width: 15px;\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label:before {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label:before {\n",
       "  content: '▼';\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label > span {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-summary,\n",
       ".xr-section-inline-details {\n",
       "  padding-top: 4px;\n",
       "  padding-bottom: 4px;\n",
       "}\n",
       "\n",
       ".xr-section-inline-details {\n",
       "  grid-column: 2 / -1;\n",
       "}\n",
       "\n",
       ".xr-section-details {\n",
       "  display: none;\n",
       "  grid-column: 1 / -1;\n",
       "  margin-bottom: 5px;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-array-wrap {\n",
       "  grid-column: 1 / -1;\n",
       "  display: grid;\n",
       "  grid-template-columns: 20px auto;\n",
       "}\n",
       "\n",
       ".xr-array-wrap > label {\n",
       "  grid-column: 1;\n",
       "  vertical-align: top;\n",
       "}\n",
       "\n",
       ".xr-preview {\n",
       "  color: var(--xr-font-color3);\n",
       "}\n",
       "\n",
       ".xr-array-preview,\n",
       ".xr-array-data {\n",
       "  padding: 0 5px !important;\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-array-data,\n",
       ".xr-array-in:checked ~ .xr-array-preview {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-array-in:checked ~ .xr-array-data,\n",
       ".xr-array-preview {\n",
       "  display: inline-block;\n",
       "}\n",
       "\n",
       ".xr-dim-list {\n",
       "  display: inline-block !important;\n",
       "  list-style: none;\n",
       "  padding: 0 !important;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list li {\n",
       "  display: inline-block;\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list:before {\n",
       "  content: '(';\n",
       "}\n",
       "\n",
       ".xr-dim-list:after {\n",
       "  content: ')';\n",
       "}\n",
       "\n",
       ".xr-dim-list li:not(:last-child):after {\n",
       "  content: ',';\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-has-index {\n",
       "  font-weight: bold;\n",
       "}\n",
       "\n",
       ".xr-var-list,\n",
       ".xr-var-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-var-item > div,\n",
       ".xr-var-item label,\n",
       ".xr-var-item > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-even);\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-var-item > .xr-var-name:hover span {\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-var-list > li:nth-child(odd) > div,\n",
       ".xr-var-list > li:nth-child(odd) > label,\n",
       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-odd);\n",
       "}\n",
       "\n",
       ".xr-var-name {\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-var-dims {\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-var-dtype {\n",
       "  grid-column: 3;\n",
       "  text-align: right;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-var-preview {\n",
       "  grid-column: 4;\n",
       "}\n",
       "\n",
       ".xr-var-name,\n",
       ".xr-var-dims,\n",
       ".xr-var-dtype,\n",
       ".xr-preview,\n",
       ".xr-attrs dt {\n",
       "  white-space: nowrap;\n",
       "  overflow: hidden;\n",
       "  text-overflow: ellipsis;\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-var-name:hover,\n",
       ".xr-var-dims:hover,\n",
       ".xr-var-dtype:hover,\n",
       ".xr-attrs dt:hover {\n",
       "  overflow: visible;\n",
       "  width: auto;\n",
       "  z-index: 1;\n",
       "}\n",
       "\n",
       ".xr-var-attrs,\n",
       ".xr-var-data {\n",
       "  display: none;\n",
       "  background-color: var(--xr-background-color) !important;\n",
       "  padding-bottom: 5px !important;\n",
       "}\n",
       "\n",
       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
       ".xr-var-data-in:checked ~ .xr-var-data {\n",
       "  display: block;\n",
       "}\n",
       "\n",
       ".xr-var-data > table {\n",
       "  float: right;\n",
       "}\n",
       "\n",
       ".xr-var-name span,\n",
       ".xr-var-data,\n",
       ".xr-attrs {\n",
       "  padding-left: 25px !important;\n",
       "}\n",
       "\n",
       ".xr-attrs,\n",
       ".xr-var-attrs,\n",
       ".xr-var-data {\n",
       "  grid-column: 1 / -1;\n",
       "}\n",
       "\n",
       "dl.xr-attrs {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  display: grid;\n",
       "  grid-template-columns: 125px auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt,\n",
       ".xr-attrs dd {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  float: left;\n",
       "  padding-right: 10px;\n",
       "  width: auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt {\n",
       "  font-weight: normal;\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-attrs dt:hover span {\n",
       "  display: inline-block;\n",
       "  background: var(--xr-background-color);\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-attrs dd {\n",
       "  grid-column: 2;\n",
       "  white-space: pre-wrap;\n",
       "  word-break: break-all;\n",
       "}\n",
       "\n",
       ".xr-icon-database,\n",
       ".xr-icon-file-text2 {\n",
       "  display: inline-block;\n",
       "  vertical-align: middle;\n",
       "  width: 1em;\n",
       "  height: 1.5em !important;\n",
       "  stroke-width: 0;\n",
       "  stroke: currentColor;\n",
       "  fill: currentColor;\n",
       "}\n",
       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
       "Dimensions:               (Timestamp: 516965, NEC: 3)\n",
       "Coordinates:\n",
       "  * NEC                   (NEC) object &#x27;N&#x27; &#x27;E&#x27; &#x27;C&#x27;\n",
       "  * Timestamp             (Timestamp) datetime64[ns] 2015-01-01 ... 2015-12-3...\n",
       "Data variables:\n",
       "    B_NEC_res_CHAOS-full  (Timestamp, NEC) float64 3.539 -6.78 ... -227.5 -32.86\n",
       "    gridpoint_qdmlt       (Timestamp) int64 37454 27138 19611 ... 29219 29215\n",
       "Attributes: (2)</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-49aac876-c90b-44b6-b0a6-28430992cd32' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-49aac876-c90b-44b6-b0a6-28430992cd32' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>Timestamp</span>: 516965</li><li><span class='xr-has-index'>NEC</span>: 3</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-0c7795d5-51f0-4757-9cf4-d18831e9a279' class='xr-section-summary-in' type='checkbox'  checked><label for='section-0c7795d5-51f0-4757-9cf4-d18831e9a279' class='xr-section-summary' >Coordinates: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>NEC</span></div><div class='xr-var-dims'>(NEC)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>&#x27;N&#x27; &#x27;E&#x27; &#x27;C&#x27;</div><input id='attrs-45b96262-8f73-46b2-8929-7079915250b9' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-45b96262-8f73-46b2-8929-7079915250b9' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-601acf59-1508-4b7b-8b89-87c2066447a2' class='xr-var-data-in' type='checkbox'><label for='data-601acf59-1508-4b7b-8b89-87c2066447a2' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>description :</span></dt><dd>NEC frame - North, East, Centre (down)</dd><dt><span>units :</span></dt><dd></dd></dl></div><div class='xr-var-data'><pre>array([&#x27;N&#x27;, &#x27;E&#x27;, &#x27;C&#x27;], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>Timestamp</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>2015-01-01 ... 2015-12-31T23:59:00</div><input id='attrs-9c933bc3-422c-41c8-ba33-c13c29d5ebc8' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-9c933bc3-422c-41c8-ba33-c13c29d5ebc8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d30f2f00-faeb-472a-9f56-2a1f07b60230' class='xr-var-data-in' type='checkbox'><label for='data-d30f2f00-faeb-472a-9f56-2a1f07b60230' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([&#x27;2015-01-01T00:00:00.000000000&#x27;, &#x27;2015-01-01T00:01:00.000000000&#x27;,\n",
       "       &#x27;2015-01-01T00:02:00.000000000&#x27;, ..., &#x27;2015-12-31T23:57:00.000000000&#x27;,\n",
       "       &#x27;2015-12-31T23:58:00.000000000&#x27;, &#x27;2015-12-31T23:59:00.000000000&#x27;],\n",
       "      dtype=&#x27;datetime64[ns]&#x27;)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-99b40518-d9d2-477c-bcb6-e764e2fad088' class='xr-section-summary-in' type='checkbox'  checked><label for='section-99b40518-d9d2-477c-bcb6-e764e2fad088' class='xr-section-summary' >Data variables: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>B_NEC_res_CHAOS-full</span></div><div class='xr-var-dims'>(Timestamp, NEC)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>3.539 -6.78 ... -227.5 -32.86</div><input id='attrs-7eed1e70-3661-4305-ae0e-aeae8c2bc68b' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-7eed1e70-3661-4305-ae0e-aeae8c2bc68b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-fdb82aeb-dc5e-44fb-b1c2-dc9c3cd7da21' class='xr-var-data-in' type='checkbox'><label for='data-fdb82aeb-dc5e-44fb-b1c2-dc9c3cd7da21' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[   3.53944094,   -6.77956809,    0.81564143],\n",
       "       [   3.30022008,    4.50055365,   -1.8353114 ],\n",
       "       [   9.17728344,   11.64451746,   -4.83218407],\n",
       "       ...,\n",
       "       [ 246.87659093, -246.6050376 , -170.05458382],\n",
       "       [  90.72929791, -279.6374814 ,  -85.45113823],\n",
       "       [  27.35401177, -227.45599495,  -32.86073896]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>gridpoint_qdmlt</span></div><div class='xr-var-dims'>(Timestamp)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>37454 27138 19611 ... 29219 29215</div><input id='attrs-d157f382-8a4b-4790-852b-1114f80caf48' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-d157f382-8a4b-4790-852b-1114f80caf48' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1b6c48c7-e6ee-42b2-834e-96d3852df5a9' class='xr-var-data-in' type='checkbox'><label for='data-1b6c48c7-e6ee-42b2-834e-96d3852df5a9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([37454, 27138, 19611, ..., 29281, 29219, 29215])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-aaaea7a9-acb9-4df2-9684-bd63650b1d8d' class='xr-section-summary-in' type='checkbox'  ><label for='section-aaaea7a9-acb9-4df2-9684-bd63650b1d8d' class='xr-section-summary' >Attributes: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>MagneticModels :</span></dt><dd>[&quot;CHAOS-MCO = &#x27;CHAOS-Core&#x27;(max_degree=15,min_degree=1)&quot;, &quot;CHAOS-MMA = &#x27;CHAOS-MMA-Primary&#x27;(max_degree=2,min_degree=1) + &#x27;CHAOS-MMA-Secondary&#x27;(max_degree=2,min_degree=1)&quot;, &quot;CHAOS-Static_n16plus = &#x27;CHAOS-Core&#x27;(max_degree=20,min_degree=16) + &#x27;CHAOS-Static&#x27;(max_degree=185,min_degree=21)&quot;, &#x27;MCO_SHA_2C = MCO_SHA_2C(max_degree=18,min_degree=1)&#x27;, &quot;MIO_SHA_2C = &#x27;MIO_SHA_2C-Primary&#x27;(max_degree=60,min_degree=1) + &#x27;MIO_SHA_2C-Secondary&#x27;(max_degree=60,min_degree=1)&quot;, &#x27;MLI_SHA_2C = MLI_SHA_2C(max_degree=120,min_degree=16)&#x27;, &quot;MMA_SHA_2C = &#x27;MMA_SHA_2C-Primary&#x27;(max_degree=2,min_degree=1) + &#x27;MMA_SHA_2C-Secondary&#x27;(max_degree=3,min_degree=1)&quot;]</dd><dt><span>RangeFilters :</span></dt><dd>[&#x27;Flags_B:0,1&#x27;, &#x27;Flags_F:0,1&#x27;]</dd></dl></div></li></ul></div></div>"
      ],
      "text/plain": [
       "<xarray.Dataset>\n",
       "Dimensions:               (Timestamp: 516965, NEC: 3)\n",
       "Coordinates:\n",
       "  * NEC                   (NEC) object 'N' 'E' 'C'\n",
       "  * Timestamp             (Timestamp) datetime64[ns] 2015-01-01 ... 2015-12-3...\n",
       "Data variables:\n",
       "    B_NEC_res_CHAOS-full  (Timestamp, NEC) float64 3.539 -6.78 ... -227.5 -32.86\n",
       "    gridpoint_qdmlt       (Timestamp) int64 37454 27138 19611 ... 29219 29215\n",
       "Attributes: (2)"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Just pick one year\n",
    "_ds = ds.sel(Timestamp=\"2015\")\n",
    "# .. at 1 minute sampling\n",
    "_ds = _ds.isel(Timestamp=slice(0, -1, 6))\n",
    "# # # Just pick the northern polar region\n",
    "# ds.where(ds[\"QDLat\"] > 50, drop=True)\n",
    "# Isolate to the data we want to work with\n",
    "_ds = _ds[[\"B_NEC_res_CHAOS-full\", \"gridpoint_qdmlt\"]]\n",
    "_ds.load()\n",
    "_ds"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bc2e933c-4205-4225-8079-d2eec71349a4",
   "metadata": {},
   "source": [
    "## Extract data to input to KMeans"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0fc7861b-03ce-4ffe-ba89-50cb38b3f0df",
   "metadata": {},
   "source": [
    "This next step seems unnecessarily slow. Should find a more sensible way to do it 🤔"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "d7936bae-c984-4228-b4db-57c2e002a418",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "4fe88da0b2534d62b245b64ed92ce964",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/40962 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "def extract_n_values_gridwise(ds=_ds, n=20):\n",
    "    # Initialise array to populate with B_NEC vectors\n",
    "    arr = np.full((40962, n*3), np.nan)\n",
    "    # Set fixed seed for predictability\n",
    "    np.random.seed(123)\n",
    "    # Loop through each gridpoint\n",
    "    for grid_index in tqdm(range(40962)):\n",
    "        # Identify data within this gridpoint\n",
    "        B_NEC = ds[\"B_NEC_res_CHAOS-full\"].where(ds[\"gridpoint_qdmlt\"] == grid_index, drop=True).data\n",
    "        # Pick n random entries from given gridpoint\n",
    "        try:\n",
    "            random_choice = np.random.choice(len(B_NEC), size=n, replace=False)\n",
    "        except ValueError:\n",
    "            # There will be nans in the output where there are < n samples available\n",
    "            continue\n",
    "        arr[grid_index, :] = B_NEC[random_choice].flatten()\n",
    "    return arr\n",
    "\n",
    "arr = extract_n_values_gridwise(_ds, n=10)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "2649c29d-aafc-409a-9ed7-3f2cb1b4ce03",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
       "<defs>\n",
       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "</symbol>\n",
       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "</symbol>\n",
       "</defs>\n",
       "</svg>\n",
       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
       " *\n",
       " */\n",
       "\n",
       ":root {\n",
       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
       "  --xr-background-color: var(--jp-layout-color0, white);\n",
       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
       "}\n",
       "\n",
       "html[theme=dark],\n",
       "body.vscode-dark {\n",
       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
       "  --xr-border-color: #1F1F1F;\n",
       "  --xr-disabled-color: #515151;\n",
       "  --xr-background-color: #111111;\n",
       "  --xr-background-color-row-even: #111111;\n",
       "  --xr-background-color-row-odd: #313131;\n",
       "}\n",
       "\n",
       ".xr-wrap {\n",
       "  display: block !important;\n",
       "  min-width: 300px;\n",
       "  max-width: 700px;\n",
       "}\n",
       "\n",
       ".xr-text-repr-fallback {\n",
       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-header {\n",
       "  padding-top: 6px;\n",
       "  padding-bottom: 6px;\n",
       "  margin-bottom: 4px;\n",
       "  border-bottom: solid 1px var(--xr-border-color);\n",
       "}\n",
       "\n",
       ".xr-header > div,\n",
       ".xr-header > ul {\n",
       "  display: inline;\n",
       "  margin-top: 0;\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-obj-type,\n",
       ".xr-array-name {\n",
       "  margin-left: 2px;\n",
       "  margin-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-obj-type {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-sections {\n",
       "  padding-left: 0 !important;\n",
       "  display: grid;\n",
       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
       "}\n",
       "\n",
       ".xr-section-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-section-item input {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-item input + label {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label {\n",
       "  cursor: pointer;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label:hover {\n",
       "  color: var(--xr-font-color0);\n",
       "}\n",
       "\n",
       ".xr-section-summary {\n",
       "  grid-column: 1;\n",
       "  color: var(--xr-font-color2);\n",
       "  font-weight: 500;\n",
       "}\n",
       "\n",
       ".xr-section-summary > span {\n",
       "  display: inline-block;\n",
       "  padding-left: 0.5em;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in + label:before {\n",
       "  display: inline-block;\n",
       "  content: '►';\n",
       "  font-size: 11px;\n",
       "  width: 15px;\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label:before {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label:before {\n",
       "  content: '▼';\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label > span {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-summary,\n",
       ".xr-section-inline-details {\n",
       "  padding-top: 4px;\n",
       "  padding-bottom: 4px;\n",
       "}\n",
       "\n",
       ".xr-section-inline-details {\n",
       "  grid-column: 2 / -1;\n",
       "}\n",
       "\n",
       ".xr-section-details {\n",
       "  display: none;\n",
       "  grid-column: 1 / -1;\n",
       "  margin-bottom: 5px;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-array-wrap {\n",
       "  grid-column: 1 / -1;\n",
       "  display: grid;\n",
       "  grid-template-columns: 20px auto;\n",
       "}\n",
       "\n",
       ".xr-array-wrap > label {\n",
       "  grid-column: 1;\n",
       "  vertical-align: top;\n",
       "}\n",
       "\n",
       ".xr-preview {\n",
       "  color: var(--xr-font-color3);\n",
       "}\n",
       "\n",
       ".xr-array-preview,\n",
       ".xr-array-data {\n",
       "  padding: 0 5px !important;\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-array-data,\n",
       ".xr-array-in:checked ~ .xr-array-preview {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-array-in:checked ~ .xr-array-data,\n",
       ".xr-array-preview {\n",
       "  display: inline-block;\n",
       "}\n",
       "\n",
       ".xr-dim-list {\n",
       "  display: inline-block !important;\n",
       "  list-style: none;\n",
       "  padding: 0 !important;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list li {\n",
       "  display: inline-block;\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list:before {\n",
       "  content: '(';\n",
       "}\n",
       "\n",
       ".xr-dim-list:after {\n",
       "  content: ')';\n",
       "}\n",
       "\n",
       ".xr-dim-list li:not(:last-child):after {\n",
       "  content: ',';\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-has-index {\n",
       "  font-weight: bold;\n",
       "}\n",
       "\n",
       ".xr-var-list,\n",
       ".xr-var-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-var-item > div,\n",
       ".xr-var-item label,\n",
       ".xr-var-item > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-even);\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-var-item > .xr-var-name:hover span {\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-var-list > li:nth-child(odd) > div,\n",
       ".xr-var-list > li:nth-child(odd) > label,\n",
       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-odd);\n",
       "}\n",
       "\n",
       ".xr-var-name {\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-var-dims {\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-var-dtype {\n",
       "  grid-column: 3;\n",
       "  text-align: right;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-var-preview {\n",
       "  grid-column: 4;\n",
       "}\n",
       "\n",
       ".xr-var-name,\n",
       ".xr-var-dims,\n",
       ".xr-var-dtype,\n",
       ".xr-preview,\n",
       ".xr-attrs dt {\n",
       "  white-space: nowrap;\n",
       "  overflow: hidden;\n",
       "  text-overflow: ellipsis;\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-var-name:hover,\n",
       ".xr-var-dims:hover,\n",
       ".xr-var-dtype:hover,\n",
       ".xr-attrs dt:hover {\n",
       "  overflow: visible;\n",
       "  width: auto;\n",
       "  z-index: 1;\n",
       "}\n",
       "\n",
       ".xr-var-attrs,\n",
       ".xr-var-data {\n",
       "  display: none;\n",
       "  background-color: var(--xr-background-color) !important;\n",
       "  padding-bottom: 5px !important;\n",
       "}\n",
       "\n",
       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
       ".xr-var-data-in:checked ~ .xr-var-data {\n",
       "  display: block;\n",
       "}\n",
       "\n",
       ".xr-var-data > table {\n",
       "  float: right;\n",
       "}\n",
       "\n",
       ".xr-var-name span,\n",
       ".xr-var-data,\n",
       ".xr-attrs {\n",
       "  padding-left: 25px !important;\n",
       "}\n",
       "\n",
       ".xr-attrs,\n",
       ".xr-var-attrs,\n",
       ".xr-var-data {\n",
       "  grid-column: 1 / -1;\n",
       "}\n",
       "\n",
       "dl.xr-attrs {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  display: grid;\n",
       "  grid-template-columns: 125px auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt,\n",
       ".xr-attrs dd {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  float: left;\n",
       "  padding-right: 10px;\n",
       "  width: auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt {\n",
       "  font-weight: normal;\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-attrs dt:hover span {\n",
       "  display: inline-block;\n",
       "  background: var(--xr-background-color);\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-attrs dd {\n",
       "  grid-column: 2;\n",
       "  white-space: pre-wrap;\n",
       "  word-break: break-all;\n",
       "}\n",
       "\n",
       ".xr-icon-database,\n",
       ".xr-icon-file-text2 {\n",
       "  display: inline-block;\n",
       "  vertical-align: middle;\n",
       "  width: 1em;\n",
       "  height: 1.5em !important;\n",
       "  stroke-width: 0;\n",
       "  stroke: currentColor;\n",
       "  fill: currentColor;\n",
       "}\n",
       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
       "Dimensions:     (index: 22596, dim_1: 30)\n",
       "Coordinates:\n",
       "  * index       (index) int64 1 4 8 9 13 14 ... 40956 40957 40958 40960 40961\n",
       "Dimensions without coordinates: dim_1\n",
       "Data variables:\n",
       "    QDLat       (index) float64 -4.072 -3.857 -2.109 ... -31.72 -31.72 31.72\n",
       "    MLT         (index) float64 8.489 8.362 8.201 8.275 ... 6.0 0.0 12.0 12.0\n",
       "    input_data  (index, dim_1) float64 -8.061 15.44 5.785 ... -34.52 -18.53</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-e11390f9-ae3c-41e6-bef4-f5dfc5e987ca' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-e11390f9-ae3c-41e6-bef4-f5dfc5e987ca' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>index</span>: 22596</li><li><span>dim_1</span>: 30</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-6ff0a428-0adc-42b8-aeb0-52e3e2dd1417' class='xr-section-summary-in' type='checkbox'  checked><label for='section-6ff0a428-0adc-42b8-aeb0-52e3e2dd1417' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>index</span></div><div class='xr-var-dims'>(index)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>1 4 8 9 ... 40957 40958 40960 40961</div><input id='attrs-5bde2f3b-632b-48fc-8e7f-4e7ec364f1ca' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-5bde2f3b-632b-48fc-8e7f-4e7ec364f1ca' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a8c7ffc4-625f-4d64-bee5-a56d874a5dba' class='xr-var-data-in' type='checkbox'><label for='data-a8c7ffc4-625f-4d64-bee5-a56d874a5dba' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([    1,     4,     8, ..., 40958, 40960, 40961])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-a1c7ecfb-7591-4df2-9d17-2d42e2c58ecf' class='xr-section-summary-in' type='checkbox'  checked><label for='section-a1c7ecfb-7591-4df2-9d17-2d42e2c58ecf' class='xr-section-summary' >Data variables: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>QDLat</span></div><div class='xr-var-dims'>(index)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-4.072 -3.857 ... -31.72 31.72</div><input id='attrs-e93b818f-e011-4ae5-8ca5-ea1848b3ddb8' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-e93b818f-e011-4ae5-8ca5-ea1848b3ddb8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c7d38c27-34d4-499a-8838-7daf6ddb545c' class='xr-var-data-in' type='checkbox'><label for='data-c7d38c27-34d4-499a-8838-7daf6ddb545c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([ -4.07163665,  -3.85717051,  -2.10856989, ..., -31.71747441,\n",
       "       -31.71747441,  31.71747441])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>MLT</span></div><div class='xr-var-dims'>(index)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>8.489 8.362 8.201 ... 0.0 12.0 12.0</div><input id='attrs-f6806320-ad37-4240-9adf-839f9fa1b192' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-f6806320-ad37-4240-9adf-839f9fa1b192' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8dafff8d-fb01-411d-a677-f23de22bd629' class='xr-var-data-in' type='checkbox'><label for='data-8dafff8d-fb01-411d-a677-f23de22bd629' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([ 8.48933828,  8.36187913,  8.20106486, ...,  0.        ,\n",
       "       12.        , 12.        ])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>input_data</span></div><div class='xr-var-dims'>(index, dim_1)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-8.061 15.44 ... -34.52 -18.53</div><input id='attrs-8f54ea63-8f62-42bd-819a-4c5ff07bb6f8' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8f54ea63-8f62-42bd-819a-4c5ff07bb6f8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-624d2076-23cd-4221-899a-fddc5e11618f' class='xr-var-data-in' type='checkbox'><label for='data-624d2076-23cd-4221-899a-fddc5e11618f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ -8.06101744,  15.44360718,   5.78491247, ...,  -3.49858879,\n",
       "          6.25316527,  10.77962379],\n",
       "       [  0.25396202,   0.24909554,   2.05052808, ...,  -3.64613497,\n",
       "        -18.26229707,   9.14857288],\n",
       "       [ -5.35286004,  -8.20867212,  10.3768513 , ...,  -2.6797055 ,\n",
       "         -5.89843019,   2.04507423],\n",
       "       ...,\n",
       "       [ -8.89105853,   0.95984786,  -1.7432049 , ...,  -6.15089151,\n",
       "        -16.70766272,  -6.1879611 ],\n",
       "       [-21.70877568,  -3.65336697,   8.99747845, ...,  -0.20209992,\n",
       "          4.20647611,   8.26071313],\n",
       "       [ -2.93157909,  10.88185274, -10.27416101, ..., -13.62778231,\n",
       "        -34.52002177, -18.53332211]])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-5168afbf-0683-493d-b20f-3500e68731a6' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-5168afbf-0683-493d-b20f-3500e68731a6' class='xr-section-summary'  title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
      ],
      "text/plain": [
       "<xarray.Dataset>\n",
       "Dimensions:     (index: 22596, dim_1: 30)\n",
       "Coordinates:\n",
       "  * index       (index) int64 1 4 8 9 13 14 ... 40956 40957 40958 40960 40961\n",
       "Dimensions without coordinates: dim_1\n",
       "Data variables:\n",
       "    QDLat       (index) float64 -4.072 -3.857 -2.109 ... -31.72 -31.72 31.72\n",
       "    MLT         (index) float64 8.489 8.362 8.201 8.275 ... 6.0 0.0 12.0 12.0\n",
       "    input_data  (index, dim_1) float64 -8.061 15.44 5.785 ... -34.52 -18.53"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "cluster_data = gridcoords.assign(input_data=((\"index\", \"dim_1\"), arr))\n",
    "cluster_data = cluster_data.dropna(\"index\")\n",
    "cluster_data"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "05401e41-1d15-4f74-ada5-efe75172c548",
   "metadata": {},
   "source": [
    "## Apply KMeans algorithm"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "348d0ed7-8a2b-4aeb-979d-b3d937ed1027",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "5dffd231c99741fbacf06aecb6ce4c3f",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/14 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAyG0lEQVR4nO3deXxU5dn/8c83CfsWIQGSkMgqyC5EFHC3VVAQ97V20db6aO3ydLHLr7WPdtFWu1q3WqW2FUvdWlFR6r6gEBAQEJRFICwJ+w5JyPX745zQMZ2ECWRyJsn1fr3yysw5Z875zmQy19znvs85MjOcc8656tKiDuCccy41eYFwzjkXlxcI55xzcXmBcM45F5cXCOecc3F5gXDOOReXF4hmRNIuSb2jzlFF0quSvlgP6ykIn1t6feRKNkn3SfphA29zsqSfNOQ2U42k0yQVR52jMfECkaIkvSDp1jjTJ0naICmjrus0s/ZmtqJ+EqYOM1sdPrcDUWdJhJldb2a3RZ2jrvwDtvnxApG6JgNXS1K16VcDfzOzikRXdDjFxEFjaZE0Fk3pfdiUnkttvECkrqeBzsDJVRMkHQVMAB6RNErSTEnbJK2XdLekljHLmqQbJX0EfBQzrW94+1xJ70naIWmNpB/HPLZnuOznJK2WtEnSD2Lmp0v6vqTlknZKmiMpP5w3QNIMSVskLZV06SGeZx9JsyRtl/RPSZ3D9Twr6abYBSUtkHR+9RXE5M0I778q6TZJb4X5XpSUFbP8SZLeDl+7NZI+H06fLOleSc9J2g2cLilX0hOSNkpaKemrMeup8W+gwK8llYbPbYGkwTHb+Ul4+zRJxZK+GS67XtIXYrbRRdIz4d9ptqSfSHqzphezpudWbZnPV19HtffGOZIWh6/dWknfktQOeB7IVbA7b1f42qRJ+m74XtgsaWrM37Dq73KtpNXAy3GyHOr5f2I3ZPXs4fpvkPRRmPc2SX3Cv8uOME/Latv8fvie/ljSVTHTW0m6U8F7vkTBrsA21XLeLGkD8HBNf4Mmxcz8J0V/gD8CD8bc/zIwL7w9EjgRyAB6Ah8AX49Z1oAZBEWmTcy0vuHt04AhBF8ShgIlwPnhvJ7hsn8E2gDDgP3AseH8bwPvA/0BhfO7AO2ANcAXwlwjgE3AoBqe36vAWmBw+NgngL+G8y4F3o1ZdhiwGWgZZz1VeTNi1rscOCbM/ypwezivANgJXAG0CHMPD+dNBrYDY8PXpS0wB/gR0BLoDawAzj7U3wA4O3xsZvgaHQvkxGznJzF/hwrg1jDPOcAe4Khw/mPhT1tgYPj6vlnD63mo51a1zc9XXweffG+sB04Obx8FjIjJWlztcV8H3gF6AK2A+4Ep1f4uj4R/3zZxMh/q+b8KfDFm+U9kD9f/L6AjMIjgffpS+LfqBCwGPldtW78Ks54K7Ab6h/N/E66rM9ABeAb4ebXH3hE+9r+eS1P8iTxAvT8heAgoBRYmsOzR4ZtpQfhG7BF1/mr5TiL4wKr6gH8L+EYNy34deCrmvgFnVFvm4IdAnMf/Bvh1eLvqH7tHzPxZwOXh7aXApDjruAx4o9q0+4Fbatjmq4Qf3OH9gUAZkB7+E24B+oXz7gTuqWE9VXljC8T/i5l/AzA9vP292Nep2nomA4/E3D8BWF1tme8BDx/qbwCcAXxIUEDS4mwntkDsrcoeTisNH5cOlFd9gIXzfkLNBeJQzy3RArGa4MtIx2rLnMZ/F4gPgDNj7ueEmauKpgG9a3mP1/j8Y/6WhyoQY2PuzwFujrl/F/CbmG1VAO1i5k8FfkhQxHcDfWLmjQZWxjy2DGhd03Npij9NcRfTZGBcgsveSfCBMJTgG8zPkxXqcJjZm8BGYJKC0UfHA48CSDpG0jQFHdY7gJ8BWdVWsaamdUs6QdIr4a6T7cD1cR6/Ieb2HqB9eDuf4Bt6dUcDJ4S7N7ZJ2gZcBXSv5WnGZlxF8C0yy8z2E/zzfkZSGsG34r/Usp7q6po9Xp6jCXapxD6f7wPdoPa/gZm9DNwN/AEokfSApI41bHOzfbJPqSpvNsEHbWymGv+mCTy3RF1E8E1+laTXJI2uZdmjgadiXp8PgAOEr1GotsxQ8/NPVEnM7b1x7seua6uZ7Y65vwrIJXit2wJzYp7L9HB6lY1mtq8OuRq9JlcgzOx1gm+eB4X7JKcr2Ff+hqQB4ayBBC0IgFeASQ0YNVGPAJ8l6Jx+0cyq3vz3AksIvmF3JPjgqt6hXdupeh8laE7nm1kn4L44j6/JGqBPDdNfM7PMmJ/2ZvY/tawrP+Z2AcG3z03h/T8TFJgzgT1mNjPBfIeTvUrsa7aG4Btk7PPpYGbnhPNr/RuY2e/MbCTBro9jCHbN1cVGgm+8PWKm5dewbFXe2p5bld0EH4YASPpEATez2WY2CehK0Bc2tWpWDdscX+01am1ma2NXmUCmhLJS+5eNRBwV9qdUKQDWEbzn9hLsDq16Hp3MLLa4NLtTXze5AlGDB4Cbwn/WbwH3hNPnE3xbArgA6CCpSwT5avMI8CngSwQfmFU6ADuAXWHBq+1DOJ4OwBYz2ydpFHBlHR77IHCbpH5hZ+zQ8HWbBhwj6WpJLcKf4yUdW8u6PiNpoKS2BK24xy0crhoWhEqC3QR1aT3U5m/ApyRdKikj7AQeXsOys4AdYcdkGwWd84MlHR/Or/FvED7vEyS1IPiQ20fwzTph4evwJPBjSW3DbXy2Hp7bfGCQpOGSWgM/jsndUtJVkjqZWXn4/KpylwBdJHWKWdd9wE8lHR0+PltSfX7RmgdcGD7/vsC19bDO/wuf58kEgz7+YWaVBH1uv5bUFUBSnqSz62F7jVaTLxCS2gNjgH9ImkewTzwnnP0t4FRJ7xF0WK0l+MaWMszsY+Btgk6+f8XM+hbBh/pOgjf23+u46huAWyXtJOiEnXqI5WP9Klz+RYIPkD8R9JPsBM4CLif4VraB/3Tq1eQvBLsFNwCtga9Wm/8IQWf6X+uQr0Zmtppg98k3CVqa8wg6wOMtewCYCAwHVhJ8y3yQoPMTav8bdAynbSXYjbGZYJdmXX0l3N4GgtdqCkFH7GE/NzP7kKAY/5tghFv1UVFXAx+Hu82uBz4TPm5JuP0V4W6YXOC3BO/LF8P30jsEfTf15dcE+/5LCL4g/e0I17eB4G+yLlzX9eHzArgZWAa8Ez73fxMMxGi2FHbANCmSegLTzGxwuN93qZnlHOIx7YElZtajtuVcw5L0WeA6Mzsp6iypQNIdQHcz+1zUWVzT1+RbEGa2A1gp6RI4OD59WHg7K+wAhWAEyEMRxXRxhLudbiDYRdgsKTiuZGj4vh1FsIvlqahzueahyRUISVOAmUD/8MCWawk6Oq+VNB9YxH86o08Dlkr6kGDUxU8jiOziCPf9biTYtfBoxHGi1IGgH2I3wW69u4B/RprINRtNcheTc865I9fkWhDOOefqR5M64VRWVpb17Nkz6hjOOddozJkzZ5OZZceb16QKRM+ePSkqKoo6hnPONRqSVtU0z3cxOeeci8sLhHPOubi8QDjnnIvLC4Rzzrm4vEA455yLywuEc865uLxAOOeci6vZF4h95Qf44+sreHfF5qijOOdcSmn2BQLgwTdXcNeMD6OO4ZxzKaXZF4jWLdK5/tQ+zFq5hXe8FeGccwc1+wIBcMWoArLat+L3L38UdRTnnEsZXiAIWhFfPqU3by3bzJxVW6KO45xzKcELROiqEwvo3K4lv3tpWdRRnHMuJXiBCLVtmcEXT+7Fax9uZN6abVHHcc65yHmBiPHZ0T3JbNuCu70vwjnnvEDEat8qg2vG9uLfH5SycO32qOM451ykvEBU87kxPenQOoO7X/a+COdc8+YFoppObVrwhTE9mb5oA0s27Ig6jnPORcYLRBzXnNSLdi3T+b23IpxzzZgXiDgy27bkc2N68tz761lWujPqOM45FwkvEDW49qRetM5I974I51yz5QWiBl3at+Lq0Ufzr/nrWLlpd9RxnHOuwXmBqMUXT+5Fi/Q0/vCKtyKcc82PF4hadO3QmitPKOCp99ayZsueqOM451yD8gJxCF8+pQ/pEve86q0I51zzkrQCIekhSaWSFh5iueMlHZB0ccy0cZKWSlom6bvJypiI7p1ac9nx+Tw+p5i12/ZGGcU55xpUMlsQk4FxtS0gKR24A3ih2rQ/AOOBgcAVkgYmL+ahXX9aHwDue3V5lDGcc65BJa1AmNnrwKEurnAT8ARQGjNtFLDMzFaYWRnwGDApOSkTk5fZhotH9uDvs9ewYfu+KKM451yDiawPQlIecAFwX7VZecCamPvF4bSa1nOdpCJJRRs3bqz/oKEbTuvLATPuf91bEc655iHKTurfADeb2YFq0xVnWatpJWb2gJkVmllhdnZ2feb7hPzObbnguDwefXc1pTu9FeGca/qiLBCFwGOSPgYuBu6RdD5BiyE/ZrkewLoGTxfHjaf3pfxAJQ++sTLqKM45l3SRFQgz62VmPc2sJ/A4cIOZPQ3MBvpJ6iWpJXA58K+ocsbqldWO84bl8peZq9i8a3/UcZxzLqmSOcx1CjAT6C+pWNK1kq6XdH1tjzOzCuArBCObPgCmmtmiZOWsq6+c0Zd9FQf405veinDONW0ZyVqxmV1Rh2U/X+3+c8Bz9Z2pPvTt2oFzhuTw57c/5rpTepPZtmXUkZxzLin8SOrDcNMZfdlddoCH3vo46ijOOZc0XiAOw4DuHRk3qDsPv7WSHfvKo47jnHNJ4QXiMH3ljL7s3FfBn70V4ZxrorxAHKbBeZ341LFd+dNbK9m1vyLqOM45V++8QByBm87ox7Y95fxl5qqoozjnXL3zAnEEhuVncuox2fzxjRXsKfNWhHOuafECcYS+emZftuwu49F3V0cdxTnn6pUXiCM08ujOjO3bhfteW8G+8uqnlXLOucbLC0Q9uOmMfmzatZ8ps7wV4ZxrOrxA1IMTe3dhVK/O3Pfacm9FOOeaDC8Q9eRrZ/ajZMd+/jGnOOoozjlXL7xA1JMxfbowoiCT+15dTllFZdRxnHPuiHmBqCeS+OqZ/Vi7bS9PzvVWhHOu8fMCUY9OPSaboT068YdXl1F+wFsRzrnGzQtEPZLEV8/ox5ote/nnvJS4CJ5zzh02LxD17MxjuzIwpyN/eGUZByprvJS2c86lPC8Q9Szoi+jLyk27mbbAWxHOucbLC0QSnDWwO/27deD3Ly+j0lsRzrlGygtEEqSlia+c0Zdlpbt4fuGGqOM459xh8QKRJOcMyaFPdjt+//JH3opwzjVKSSsQkh6SVCppYQ3zJ0laIGmepCJJJ8XM+1jS+1XzkpUxmdLDVsSSDTuZ8UFJ1HGcc67OktmCmAyMq2X+S8AwMxsOXAM8WG3+6WY23MwKkxMv+SYOzaVnl7b87iVvRTjnGp+kFQgzex3YUsv8XWZW9anZDmhyn6AZ6Wl87VP9WLRuB0/PWxt1HOecq5NI+yAkXSBpCfAsQSuiigEvSpoj6bpDrOO6cBdV0caNG5MZ97BMGpbHsPxM7pi+hN1+7WrnXCMSaYEws6fMbABwPnBbzKyxZjYCGA/cKOmUWtbxgJkVmllhdnZ2cgMfhrQ08aMJAynZsZ/7X1sedRznnEtYSoxiCndH9ZGUFd5fF/4uBZ4CRkUY74iNPPoozhuWy/2vr6B4656o4zjnXEIiKxCS+kpSeHsE0BLYLKmdpA7h9HbAWUDckVCNyXfHD0CCO6YvjTqKc84lJJnDXKcAM4H+koolXSvpeknXh4tcBCyUNA/4A3BZ2GndDXhT0nxgFvCsmU1PVs6GkpvZhutO6cMz89dR9HGNfffOOZcy9J+BRI1fYWGhFRWl7mETe8oqOOPO18ju0Ip/3jiWtDRFHck518xJmlPT4QQp0QfRXLRtmcHN4/vz/trtPPmeD3t1zqU2LxANbNKwPIbnZ/ILH/bqnEtxXiAaWFqa+NHEgZTu3M+9r/qwV+dc6vICEYERBUdx/vBcHnhjBWu2+LBX51xq8gIRkZvHDyBNcPv0JVFHcc65uLxARCSnUxuuP7UPzy5Yz6yVPuzVOZd6vEBE6Mun9CGnU2tunbbIz/bqnEs5XiAi1KZlOt8dP4CFa3fw+NziqOM459wneIGI2HnDcjmuIJNfvrCUXT7s1TmXQrxAREwSt0wcxMad+7nnlWVRx3HOuYO8QKSA4fmZXHhcHg++udKHvTrnUoYXiBTxnXEDSJf4+fMfRB3FOecALxApo3un1vzPaX147v0NvLtic9RxnHPOC0Qq+dLJvcnt1Jpbpy3mgA97dc5FzAtECmnTMp3vnnMsi9bt4Ik5PuzVORctLxApZuLQHEYefRS/eGEpO/eVRx3HOdeMeYFIMZL40YSBbNq1n3v8bK/OuQh5gUhBw/IzuXBEHn96YyWrN/uwV+dcNLxApKibxw0gPc2HvTrnouMFIkV169iaG07rw/MLN/COD3t1zkUgaQVC0kOSSiUtrGH+JEkLJM2TVCTppJh54yQtlbRM0neTlTHVfemU3uRltuHWZ3zYq3Ou4SWzBTEZGFfL/JeAYWY2HLgGeBBAUjrwB2A8MBC4QtLAJOZMWa1bBGd7Xbx+B/8oWhN1HOdcM5O0AmFmrwM1XgnHzHaZWdXX4nZA1e1RwDIzW2FmZcBjwKRk5Ux1E4bmUHj0Udz5og97dc41rEj7ICRdIGkJ8CxBKwIgD4j9ulwcTmuWJPGjiQPZtKuMu/1sr865BhRpgTCzp8xsAHA+cFs4WfEWrWkdkq4L+zCKNm7cmISU0RvaI5OLR/bg4Tc/ZtXm3VHHcc41EykxiincHdVHUhZBiyE/ZnYPYF0tj33AzArNrDA7OzvJSaPz7bP7k5EufvacD3t1zjWMQxYISd0k/UnS8+H9gZKuPdINS+orSeHtEUBLYDMwG+gnqZeklsDlwL+OdHuNXbeOrbnx9L68sKiEt5dvijqOc64ZSKQFMRl4AcgN738IfP1QD5I0BZgJ9JdULOlaSddLuj5c5CJgoaR5BKOWLrNABfCVcJsfAFPNbFHiT6npuvakXj7s1TnXYPSfgUQ1LCDNNrPjJb1nZseF0+aFw1NTSmFhoRUVFUUdI6meXbCeGx+dy88uGMKVJxREHcc518hJmmNmhfHmJdKC2C2pC2FHsaQTge31mM/VwTlDujOqZ2fuenEpO3zYq3MuiRIpEP9L0AfQR9JbwCPATUlN5WpUNex1y54y7n7Zh70655LnkAXCzOYCpwJjgC8Dg8xsQbKDuZoNzuvEJSN78PBbK/l4kw97dc4lRyKjmG4E2pvZIjNbCLSXdEPyo7nafOvs/rRMT+OnPuzVOZckiexi+pKZbau6Y2ZbgS8lLZFLSNcOrbnxjL7MWFzCM/NrPEzEOecOWyIFIq3qeAU4eDK9lsmL5BJ1zdhejDz6KL7+93n8c97aqOM455qYRArEC8BUSWdKOgOYAkxPbiyXiNYt0vnzNaMoDIuEn/HVOVefEikQNwMvA/8D3Ehwmu7vJDOUS1z7VhlM/sIoTuqbxbcfX8Df3l0VdSTnXBORcagFzKwSuDf8cSmoTct0/vjZQm7821x+8NRC9pdXcs1JvaKO5Zxr5BIZxTRW0gxJH0paIWmlpBUNEc4lrnWLdO79zEjGD+7OrdMWc8+rfoyEc+7IHLIFAfwJ+AYwBziQ3DjuSLTMSOP3VxzHN/8xn19MX8r+8kq+/ql+xIwxcM65hCVSILab2fNJT+LqRUZ6Gr+6dDgt09P47Usfsb+ikpvH9fci4Zyrs0QKxCuSfgk8CeyvmhgeYe1SUHqauOOiobRqkcZ9ry1nX/kBbpk40IuEc65OEikQJ4S/Y8/2Z8AZ9R/H1Ze0NHHbpMG0TE/nobdWUnagkp9MGkxamhcJ51xiEhnFdHpDBHH1TxI/nHAsrVukcc+ryymrqOSOi4aS7kXCOZeARFoQSDoXGAS0rppmZrcmK5SrP5L49tn9ad0inV/N+JD9FZX86tJhtEhPiavNOudS2CELhKT7gLbA6cCDwMXArCTncvVIEl89sx8tM9K4/fkllFUc4PdXjKBlhhcJ51zNEvmEGGNmnwW2mtn/AaOB/OTGcslw/al9uGXiQF5YVML1f53DvnIfteycq1kiBWJv+HuPpFygHPDDdBupL4ztxc8uGMIrS0v54p+L2FNWEXUk51yKSqRATJOUCfwSmAt8DDyWxEwuya48oYBfXjyMt5dv4vMPz2bXfi8Szrn/lsgV5W4zs21m9gRwNDDAzH6Y/GgumS4e2YPfXn4cc1Zt5eo/vcv2vX59a+fcJ9VYIMJTeyPpwqof4FzgzPB2rSQ9JKlU0sIa5l8laUH487akYTHzPpb0vqR5korq/rRcIiYOy+UPV45g4drtXPXgO2zdXRZ1JOdcCqmtBXFq+HtinJ8JCax7MjCulvkrgVPNbChwG/BAtfmnm9lwMyv874e6+jJucHceuLqQD0t2ccUf32HTrv2HfpBzrlmQmdU8U0oDLjazqYe1cqknMM3MBh9iuaOAhWaWF97/GCg0s0112V5hYaEVFXmD43C8+dEmvvjIbPIy2/Dol06kW8fWh36Qc67RkzSnpi/itfZBhNeC+EpSUn3StUDsCQENeFHSHEnX1fZASddJKpJUtHHjxqSGbMpO6pfFn78wig3b93Hp/TNZu23voR/knGvSEhnFNEPStyTlS+pc9VNfASSdTlAgbo6ZPNbMRgDjgRslnVLT483sATMrNLPC7Ozs+orVLJ3Quwt/+eIJbNldxqX3zWT15j1RR3LORSiRAnENwaVGXye4JsQcoF7240gaSnB09iQz21w13czWhb9LgaeAUfWxPXdoIwqO4tEvnsjusgouvX8myzfuijqScy4iiQxz7RXnp/eRblhSAcEpxK82sw9jpreT1KHqNnAWEHcklEuOIT06MeVLJ1J+oJKJv3+T+19bTvmByqhjOecaWK2d1AcXkgYDA/nkyfoeOcRjpgCnAVlACXAL0CJ87H2SHgQuAlaFD6kws0JJvQlaDRCcK+pRM/tpIk/GO6nrV/HWPfz4X4v49wel9OvantvOH8yJvbtEHcs5V49q66Q+ZIGQdAvBB/1A4DmCfoE3zezies55xLxAJMe/F5fw42cWUbx1L+cPz+X75x5L1w4+ysm5puCwRzGFLgbOBDaY2ReAYUCresznUtynBnZjxjdO5aYz+vLc+xs4887XePitlVT4bifnmrRECsS+cLhrhaSOQClwxH0QrnFp0zKdb57Vnxe+cQrDCzL5v2cWM/Hut5izakvU0ZxzSVLbqTbuljQWmBWerO+PBCOY5uLXg2i2emW145FrRnHvVSPYtqeMi+6dybf/MZ/NfgS2c01ObRcM+gi4E8gFdgFTgE8DHc1sQQNkcylKEuOH5HDKMdn87uWP+NMbK3lxcQnfPrs/V4wq8EuaOtdE1NiCMLPfmtlo4BRgC/AwwdHO50vq10D5XApr1yqD740/lue/djLH5nTg/z29kAvueYsFxduijuacqwcJDXM9uLB0HPAQMNTM0pOW6jD5KKbomBn/mr+Onzz7AZt27efKUQV8++z+ZLZtGXU051wtjmgUk6QWkiZK+htBC+JDguMXnDtIEpOG5/HSN0/l82N6MmXWas646zWmFq2hsjLxLyHOudRRWyf1pyU9BBQD1xEcA9HHzC4zs6cbKJ9rZDq2bsEtEwcx7aaT6ZXVju88voBL7p/JonXbo47mnKujGncxSXoFeBR4wswaxVhG38WUWiorjcfnFnP780vYtqeMz47uyf+edQwdW7eIOppzLnRER1I3Jl4gUtO2PWX88oWlPDprNVntW/GDc45l0vBcJB/t5FzUjvRIaueOSGbblvz0giE8fcNYcjq15ut/n8cVf3yHj0p2Rh3NOVcLb0G4BnWg0nhs9mp+MX0pu/ZXcMaArlx5QgGn9Mv24yeci0BtLYjaDpRzrt6lp4mrTjiacYO688AbK3i8qJgZi0vIy2zDFaPyubQwn65+uVPnUoK3IFykyioqeXHxBh59dzVvL99MRpr41LHduPKEAk7qm0WatyqcSypvQbiU1TIjjQlDc5kwNJcVG3fx2Ow1PD6nmOmLNlDQuS2Xj8rnkpH5ZHfwEwg719C8BeFSzv6KA0xfGLQq3l25hYw0cdagblw56mjG9OnirQrn6pEPc3WN1rLSXTw2azWPzy1m255yenZpy+WjCrh4ZA+y2nurwrkj5QXCNXr7yv/Tqpj18RZapIuzB3XnyhMKGN27ix9T4dxh8gLhmpSPSnby6KzVPDGnmB37Kuid1Y4rRhVw0cgedG7nJwd0ri68QLgmaV/5AZ5dsJ4ps1ZTtGorLdPTGD+kO1eOKmBUr87eqnAuAZEUiPBEfxOAUjMbHGf+VcDN4d1dwP+Y2fxw3jjgt0A68KCZ3Z7INr1ANF9LN+xkyqzVPDG3mJ37KuiTHbQqzj8uz/sqnKtFVAXiFIIP/kdqKBBjgA/MbKuk8cCPzewESekEpxT/NMGZZGcDV5jZ4kNt0wuE21t2gGkL1vHorNW8t3rbweMqLjs+n1OO8aO1nasukuMgzOx1ST1rmf92zN13gB7h7VHAMjNbASDpMWAScMgC4VyblulcUpjPJYX5fFSyk6lFa3hy7lqmL9pA946tuWhkHpcW5nN0l3ZRR3Uu5aXKgXLXElyMCCAPWBMzrxg4ocETuUavX7cO/ODcgXz77AG8vKSEqUXF3Pvqcv7wynJO6NWZy47PZ/zgHNq0TLmLIzqXEiIvEJJOJygQJ1VNirNYjfvBJF1HcEEjCgoK6j2fa/xaZqQxbnAO4wbnsGH7Pp6YW8zUojX879T53PLPRUwcnstlhfkM7dHJO7adi5HUUUzhLqZp8fogwvlDgaeA8Wb2YThtNEF/xNnh/e8BmNnPD7U974NwiTIz3l25hamz1/DcwvXsK69kQPcOXFKYzwXH5flwWddsRDbMtbYCIakAeBn4bGx/hKQMgk7qM4G1BJ3UV5rZokNtzwuEOxw79pXzzPx1TJ29hvnF22mRLj49sBuXFuZzsp+G3DVxUY1imgKcBmQBJcAtQAsAM7tP0oPARcCq8CEVVSElnQP8hmCY60Nm9tNEtukFwh2pJRt2MHV2MU+9V8zWPeXkdGrNxSN7cMnIfAq6tI06nnP1zg+Uc66O9lcc4KUPSvn77DW8/tFGzGB07y5cdnw+4wZ3p3UL79h2TYMXCOeOwLpte3liTjFT56xhzZa9dGidwXnDcpk4LJfje3b2XVCuUfMC4Vw9qKw03lmxmalFa5i+aAP7yivp2qEV5wzJYcLQHEYUHOWnIneNjhcI5+rZ7v0VvLSklGcXrOOVpRspq6gkp1Prg8VieH6mD5l1jYIXCOeSaOe+cv79QQnPLljPax9upPyAkZfZhglDc5gwNJfBeR29WLiU5QXCuQayfW85MxaXMG3BOt78aBMVlcbRXdpy7pCgWByb08GLhUspXiCci8DW3WW8uHgD0xas5+3lmzlQafTObseEITlMGJbLMd06RB3ROS8QzkVt8679TF+0gWnz1/Puys1UGvTr2p4JQ3OZMCyHPtnto47omikvEM6lkNKd+5i+MGhZzP54C2YwoHsHJg7L5dwhOfTM8jPNuobjBcK5FLVh+z6eX7ieaQvWM2fVVgAG53XkohE9uOC4PDLb+jmhXHJ5gXCuEVi3bS/Pvb+ef81fx4Li7bTMSOPcITlcfny+X0LVJY0XCOcamUXrtvPYrDU8/d5adu6voHd2Oy4/Pp+LRvSgi19C1dUjLxDONVJ7yw7w7PvreWzWaopWbaVFujhrUHeuOL6AMX26+JHb7oh5gXCuCfioZCdTZq3hyfeK2bannILObbns+HwuGdmDrh1bRx3PNVJeIJxrQvaVH+CFRRuYMms176zYQnqaOHNAV64YVcApx/j1K1zd1FYgIr/kqHOublq3SGfS8DwmDc9j5abdPDZ7NU/MKebFxSXkdmrNpcfnc2lhPrmZbaKO6ho5b0E41wSUVVTy7w9KmDJrNW8u24SAU4/J5vJRBZwxoCst0tOijuhSlO9icq4ZWbNlD1OL1jC1aA0lO/bTtUMrLinsweXHF5Df2a+K5z7JC4RzzVDFgUpeWbqRx2at5pWlpVQanNQ3iwtH5DG2bxbdvGPb4QXCuWZv/fa9TJ1dzNSiNazdtheAvl3bM6ZPF8b0yeLE3p39qO1myguEcw4Iroq3eP0O3lq2ibeXb2bWyi3sLT+ABINyOzK2Txaj+3RhVK/OtG3pY1iaAy8Qzrm4yioqmV+8jbeXbeat5Zt4b/VWyg8YLdLF8PxMRvfJYmyfLgwvyKRVRnrUcV0SRFIgJD0ETABKzWxwnPkDgIeBEcAPzOzOmHkfAzuBA0BFTeGr8wLh3JHZW3aAolVbeGvZZmYu38T7a7dTadC6RRrH9+zMmD5ZjOnThcF5nfx4iyYiquMgJgN3A4/UMH8L8FXg/Brmn25mm+o/lnOuJm1apnNyv2xO7pcNBFfIe3fFZt5evpm3l2/ijulLAOjQOoMTe3dhbJ8ujOmbRb+u7f1kgk1Q0gqEmb0uqWct80uBUknnJiuDc+7IdGrTgrMGdeesQd2B4FoWM5dvZubyoGjMWFwCQFb7Vozp04Wxfbtw1sDuHNXOO7ybgqT2QYQFYlq8XUwxy/wY2FVtF9NKYCtgwP1m9kAtj78OuA6goKBg5KpVq+onvHPukNZs2cPM5UH/xdvLN7Nx535apIvT+3flwhE9OH1AtvddpLjGeKqNsWa2TlJXYIakJWb2erwFw+LxAAR9EA0Z0rnmLr9zW/I7t+XS4/MxMxat28HT763l6XnreHFxCZltWzBhaA4XjujBcfmZvhuqkUnJAmFm68LfpZKeAkYBcQuEcy41SGJwXicG53Xiu+MH8OayTTw5dy3/KCrmr++spldWOy48Lo/zj8vzI7obiZQrEJLaAWlmtjO8fRZwa8SxnHN1kJGexmn9u3Ja/67s3FfO8ws38OTcYu6a8SF3zfiQUb06c9GIPMYPyaFj6xZRx3U1SOYw1ynAaUAWUALcArQAMLP7JHUHioCOQCWwCxgYLv9UuJoM4FEz+2ki2/Rhrs6ltuKte3j6vbU8+d5aVmzcTauMND49sBsXjejByf2yyPCTCjY4P1DOOZdSzIz5xdt5cm4xz8xfx9Y95WS1b8l5w/K4cEQeg3I7en9FA/EC4ZxLWWUVlby6tJQn567l5SWllB2opH+3Dlw4IrjmRfdOflLBZPIC4ZxrFLbtKWPagvU8ObeYuau3If3nDLRnD+ru54dKAi8QzrlGZ+Wm3Tz13lqeeq+YNVv20rZlOmcP6s55w3IZ2zeLlhneX1EfvEA45xotM6No1VaenFvMc+9vYPvecjLbtmD84O5MHJrLCb27+HmhjoAXCOdck1BWUcmbyzbyr3nrmLG4hN1lB8ju0Ipzh+QwcVguIwr8YLy68gLhnGty9pYd4JWlpTwzfx0vLSmlrKKSvMw2TBiWw3nDchmY4yOhEuEFwjnXpO3cV86MxSU8M38db3y0iYpKo3d2OyYOzWXisFz6dm0fdcSU5QXCOddsbN1dxvMLN/DM/HW8s3IzZjAwpyMTh+UyYWiOn+ajGi8QzrlmqXTHPp59fz3PzF/H3NXbADiuIJOJQ4Ni0bWjH2PhBcI51+yt2bKHaQuCYrF4/Q4kOLFXFyYOy2X84OZ7DQsvEM45F2NZ6S6emb+OZ+avY8Wm3WSkiTF9szipbxdG985iYG7HZjN01guEc87FYWYsXr+DZ+av58XFG1ixcTcAHVtnMKpXF0b36cKYPl3o360DaU20YHiBcM65BJTs2Mc7K4JLqs5csZlVm/cAcFTbFpzYOygYo3t3oW8Tuga3FwjnnDsM67btPVgsZi7fzNpte4HgGtwn9u58sGD0ymrXaAuGFwjnnDtCZsaaLXuZuWLTwaJRsmM/AN06tmL0wRZGFvmd2zSaguEFwjnn6pmZsXLT7oOti3dWbGbTrjIA8jLb/GeXVJ8u5GW2iThtzbxAOOdckpkZy0p3faJgbN1TDkBB57aceWxXJgxNvfNFeYFwzrkGVllpLC3Zyczlm3lr2SbeWLbp4Pmizh2aw4ShOQzJ6xR5sfAC4ZxzEduxr5x/Ly5h2oL1vPHRRsoPGAWd2x4sFlGdXNALhHPOpZDte8p5YdEGpr2/nreWbeJApdE7q11YLHLp371Dg2WJpEBIegiYAJSa2eA48wcADwMjgB+Y2Z0x88YBvwXSgQfN7PZEtukFwjnX2GzZXcb0hRuYtmAd76zYTKVBv67tmTA0l3OH5iT9TLRRFYhTgF3AIzUUiK7A0cD5wNaqAiEpHfgQ+DRQDMwGrjCzxYfaphcI51xjtnHnfqYvXM8zC9Yz++MtmMGA7h0Onon26C7t6n2btRWIpF0B3Mxel9SzlvmlQKmkc6vNGgUsM7MVAJIeAyYBhywQzjnXmGV3aMXVo3ty9eiebNi+j+feX8+0Bev45QtL+eULSxmS14lzh+Zw7pCGOW150grEEcgD1sTcLwZOqGlhSdcB1wEUFBQkN5lzzjWQ7p1ac81JvbjmpF6s3baXZxes49kF67n9+SXc/vwShudnMmFoDucOzSGnU3KOs0hLylqPTLxu/Br3g5nZA2ZWaGaF2dnZSYzlnHPRyMtsw3Wn9OGfXzmJ1799Ot8Z15+yikp+8uwHjP75y1x6/0zKD1TW+3ZTsQVRDOTH3O8BrIsoi3POpZSCLm254bS+3HBaX1Zs3MWzC9azdtteWqTX//f9VCwQs4F+knoBa4HLgSujjeScc6mnd3Z7bjqzX9LWn7QCIWkKcBqQJakYuAVoAWBm90nqDhQBHYFKSV8HBprZDklfAV4gGOb6kJktSlZO55xz8SVzFNMVh5i/gWD3Ubx5zwHPJSOXc865xKRiJ7VzzrkU4AXCOedcXF4gnHPOxeUFwjnnXFxeIJxzzsXlBcI551xcTep6EJI2AquizhFHFrAp6hCHybNHw7M3vMaaG44s+9FmFvc8RU2qQKQqSUU1nU431Xn2aHj2htdYc0PysvsuJuecc3F5gXDOOReXF4iG8UDUAY6AZ4+GZ294jTU3JCm790E455yLy1sQzjnn4vIC4ZxzLi4vEEkkKV/SK5I+kLRI0teizlQXktIlvSdpWtRZ6kJSpqTHJS0JX/vRUWdKlKRvhO+VhZKmSGoddaaaSHpIUqmkhTHTOkuaIemj8PdRUWasSQ3Zfxm+ZxZIekpSZoQRaxQve8y8b0kySVn1sS0vEMlVAXzTzI4FTgRulDQw4kx18TXgg6hDHIbfAtPNbAAwjEbyHCTlAV8FCs1sMMEFsy6PNlWtJgPjqk37LvCSmfUDXgrvp6LJ/Hf2GcBgMxsKfAh8r6FDJWgy/50dSfnAp4HV9bUhLxBJZGbrzWxueHsnwQdVXrSpEiOpB3Au8GDUWepCUkfgFOBPAGZWZmbbIg1VNxlAG0kZQFtS+HrsZvY6sKXa5EnAn8PbfwbOb8hMiYqX3cxeNLOK8O471HBBs6jV8LoD/Br4DlBvI4+8QDQQST2B44B3I46SqN8QvNkqI85RV72BjcDD4e6xByW1izpUIsxsLXAnwTfA9cB2M3sx2lR11s3M1kPwBQnoGnGew3UN8HzUIRIl6TxgrZnNr8/1eoFoAJLaA08AXzezHVHnORRJE4BSM5sTdZbDkAGMAO41s+OA3aTubo5PCPfXTwJ6AblAO0mfiTZV8yPpBwS7h/8WdZZESGoL/AD4UX2v2wtEkklqQVAc/mZmT0adJ0FjgfMkfQw8Bpwh6a/RRkpYMVBsZlUttccJCkZj8ClgpZltNLNy4ElgTMSZ6qpEUg5A+Ls04jx1IulzwATgKms8B4n1IfhSMT/8n+0BzJXU/UhX7AUiiSSJYF/4B2b2q6jzJMrMvmdmPcysJ0En6ctm1ii+yZrZBmCNpP7hpDOBxRFGqovVwImS2obvnTNpJB3sMf4FfC68/TngnxFmqRNJ44CbgfPMbE/UeRJlZu+bWVcz6xn+zxYDI8L/hSPiBSK5xgJXE3wDnxf+nBN1qGbgJuBvkhYAw4GfRRsnMWGr53FgLvA+wf9nyp7+QdIUYCbQX1KxpGuB24FPS/qIYETN7VFmrEkN2e8GOgAzwv/V+yINWYMasidnW42nFeWcc64heQvCOedcXF4gnHPOxeUFwjnnXFxeIJxzzsXlBcI551xcXiBckyKpu6THJC2XtFjSc5KOkdQz3tkvE1zn5yXlHmGuz0uqlDQ0ZtrC8BQsR0zSrvpYj3OxvEC4JiM8uOwp4FUz62NmA4HvA92OcNWfJzj1RV2yZMSZXExwSoSUUkNW57xAuCbldKDczA4e4GRm88zsjdiFwm/zd8fcnybptPD6F5PDb/bvh9dmuBgoJDjwbp6kNpJGSnpN0hxJL8ScWuJVST+T9BrBqdKrmwYMijnKOzbTrpjbF0uaHN6eLOleBdcVWSHp1PB6AB9ULRPzuLskzZX0kqTscFofSdPDrG9IGhCz3l9JegW4o06vsms2vEC4pmQwcCQnGBwO5JnZYDMbAjxsZo8DRQTn5hlOcBK33wMXm9lI4CHgpzHryDSzU83srjjrrwR+QdCqqYujgDOAbwDPEJzWeRAwRNLwcJl2wFwzGwG8BtwSTn8AuCnM+i3gnpj1HgN8ysy+Wcc8rpnwpqVz/7EC6C3p98CzQLxTbfcnKEQzgj1apBOcmrvK3w+xjUeBH0jqVYdcz5iZSXofKDGz9wEkLQJ6AvMIik/Vtv8KPBmeRXgM8I8wK0CrmPX+w8wO1CGHa2a8QLimZBFwcQLLVfDJ1nNrADPbKmkYcDZwI3ApwXUBYglYZGY1XcZ0d20bNrMKSXcRnBTuE7Oq54mxP/xdGXO76n5N/8NG8By3hS2fOmd1zncxuabkZaCVpC9VTZB0vKRTqy33MTBcUlp4mcZR4bJZQJqZPQH8kP+cJnwnwUncAJYC2Qqvcy2phaRBdcw5meDU3tkx00okHSspDbigjuuD4H+5qjheCbwZXntkpaRLwqwKC6BzCfEC4ZqM8Pz9FxCcTXR5uAvmx/z3ZTvfAlYSnDH1ToKzp0JwOdhXJc0j+BCvuibxZOC+cHo6wQfxHZLmE+zeqdM1G8ysDPgdn7za2ncJOrFf5pO7rBK1m6ADfA5Bf8Wt4fSrgGvDrIsILkjkXEL8bK7OOefi8haEc865uLxAOOeci8sLhHPOubi8QDjnnIvLC4Rzzrm4vEA455yLywuEc865uP4/h4xISB0GPm8AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def variance_for_n_clusters(arr, nmax=15):\n",
    "    \"\"\"Perform clustering analysis for n=1,2,3... clusters\n",
    "\n",
    "    Returns a figure showing the variance as a function of\n",
    "    number of clusters\n",
    "    \"\"\"\n",
    "    # Collect variance for each fit\n",
    "    cluster_number = []\n",
    "    variance = []\n",
    "    # Calculate for number of clusters, numbers from 1 to 15\n",
    "    for k in tqdm(range(1, nmax)):\n",
    "        kmeans = KMeans(init=\"random\", n_clusters=k, n_init=30).fit(arr)\n",
    "        variance.append(kmeans.inertia_)\n",
    "        cluster_number.append(k)\n",
    "    # Plot Cluster number against variance\n",
    "    fig, ax = plt.subplots()\n",
    "    ax.plot(cluster_number, variance)\n",
    "    ax.set_xlabel(\"Cluster Number\")\n",
    "    ax.set_ylabel(\"Variance\")\n",
    "    ax.set_title(\"Variance by increasing cluster number\")\n",
    "    plt.close()\n",
    "    return fig\n",
    "\n",
    "variance_for_n_clusters(cluster_data[\"input_data\"])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6bf7da4f-9ecc-4fdf-984b-a9bcc8faf8d3",
   "metadata": {},
   "source": [
    "Let's pick 5 clusters..."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "a9d25808-4a69-4046-8040-ad3ed3244309",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
       "<defs>\n",
       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "</symbol>\n",
       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "</symbol>\n",
       "</defs>\n",
       "</svg>\n",
       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
       " *\n",
       " */\n",
       "\n",
       ":root {\n",
       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
       "  --xr-background-color: var(--jp-layout-color0, white);\n",
       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
       "}\n",
       "\n",
       "html[theme=dark],\n",
       "body.vscode-dark {\n",
       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
       "  --xr-border-color: #1F1F1F;\n",
       "  --xr-disabled-color: #515151;\n",
       "  --xr-background-color: #111111;\n",
       "  --xr-background-color-row-even: #111111;\n",
       "  --xr-background-color-row-odd: #313131;\n",
       "}\n",
       "\n",
       ".xr-wrap {\n",
       "  display: block !important;\n",
       "  min-width: 300px;\n",
       "  max-width: 700px;\n",
       "}\n",
       "\n",
       ".xr-text-repr-fallback {\n",
       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-header {\n",
       "  padding-top: 6px;\n",
       "  padding-bottom: 6px;\n",
       "  margin-bottom: 4px;\n",
       "  border-bottom: solid 1px var(--xr-border-color);\n",
       "}\n",
       "\n",
       ".xr-header > div,\n",
       ".xr-header > ul {\n",
       "  display: inline;\n",
       "  margin-top: 0;\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-obj-type,\n",
       ".xr-array-name {\n",
       "  margin-left: 2px;\n",
       "  margin-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-obj-type {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-sections {\n",
       "  padding-left: 0 !important;\n",
       "  display: grid;\n",
       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
       "}\n",
       "\n",
       ".xr-section-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-section-item input {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-item input + label {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label {\n",
       "  cursor: pointer;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label:hover {\n",
       "  color: var(--xr-font-color0);\n",
       "}\n",
       "\n",
       ".xr-section-summary {\n",
       "  grid-column: 1;\n",
       "  color: var(--xr-font-color2);\n",
       "  font-weight: 500;\n",
       "}\n",
       "\n",
       ".xr-section-summary > span {\n",
       "  display: inline-block;\n",
       "  padding-left: 0.5em;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in + label:before {\n",
       "  display: inline-block;\n",
       "  content: '►';\n",
       "  font-size: 11px;\n",
       "  width: 15px;\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label:before {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label:before {\n",
       "  content: '▼';\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label > span {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-summary,\n",
       ".xr-section-inline-details {\n",
       "  padding-top: 4px;\n",
       "  padding-bottom: 4px;\n",
       "}\n",
       "\n",
       ".xr-section-inline-details {\n",
       "  grid-column: 2 / -1;\n",
       "}\n",
       "\n",
       ".xr-section-details {\n",
       "  display: none;\n",
       "  grid-column: 1 / -1;\n",
       "  margin-bottom: 5px;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-array-wrap {\n",
       "  grid-column: 1 / -1;\n",
       "  display: grid;\n",
       "  grid-template-columns: 20px auto;\n",
       "}\n",
       "\n",
       ".xr-array-wrap > label {\n",
       "  grid-column: 1;\n",
       "  vertical-align: top;\n",
       "}\n",
       "\n",
       ".xr-preview {\n",
       "  color: var(--xr-font-color3);\n",
       "}\n",
       "\n",
       ".xr-array-preview,\n",
       ".xr-array-data {\n",
       "  padding: 0 5px !important;\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-array-data,\n",
       ".xr-array-in:checked ~ .xr-array-preview {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-array-in:checked ~ .xr-array-data,\n",
       ".xr-array-preview {\n",
       "  display: inline-block;\n",
       "}\n",
       "\n",
       ".xr-dim-list {\n",
       "  display: inline-block !important;\n",
       "  list-style: none;\n",
       "  padding: 0 !important;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list li {\n",
       "  display: inline-block;\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list:before {\n",
       "  content: '(';\n",
       "}\n",
       "\n",
       ".xr-dim-list:after {\n",
       "  content: ')';\n",
       "}\n",
       "\n",
       ".xr-dim-list li:not(:last-child):after {\n",
       "  content: ',';\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-has-index {\n",
       "  font-weight: bold;\n",
       "}\n",
       "\n",
       ".xr-var-list,\n",
       ".xr-var-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-var-item > div,\n",
       ".xr-var-item label,\n",
       ".xr-var-item > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-even);\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-var-item > .xr-var-name:hover span {\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-var-list > li:nth-child(odd) > div,\n",
       ".xr-var-list > li:nth-child(odd) > label,\n",
       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-odd);\n",
       "}\n",
       "\n",
       ".xr-var-name {\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-var-dims {\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-var-dtype {\n",
       "  grid-column: 3;\n",
       "  text-align: right;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-var-preview {\n",
       "  grid-column: 4;\n",
       "}\n",
       "\n",
       ".xr-var-name,\n",
       ".xr-var-dims,\n",
       ".xr-var-dtype,\n",
       ".xr-preview,\n",
       ".xr-attrs dt {\n",
       "  white-space: nowrap;\n",
       "  overflow: hidden;\n",
       "  text-overflow: ellipsis;\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-var-name:hover,\n",
       ".xr-var-dims:hover,\n",
       ".xr-var-dtype:hover,\n",
       ".xr-attrs dt:hover {\n",
       "  overflow: visible;\n",
       "  width: auto;\n",
       "  z-index: 1;\n",
       "}\n",
       "\n",
       ".xr-var-attrs,\n",
       ".xr-var-data {\n",
       "  display: none;\n",
       "  background-color: var(--xr-background-color) !important;\n",
       "  padding-bottom: 5px !important;\n",
       "}\n",
       "\n",
       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
       ".xr-var-data-in:checked ~ .xr-var-data {\n",
       "  display: block;\n",
       "}\n",
       "\n",
       ".xr-var-data > table {\n",
       "  float: right;\n",
       "}\n",
       "\n",
       ".xr-var-name span,\n",
       ".xr-var-data,\n",
       ".xr-attrs {\n",
       "  padding-left: 25px !important;\n",
       "}\n",
       "\n",
       ".xr-attrs,\n",
       ".xr-var-attrs,\n",
       ".xr-var-data {\n",
       "  grid-column: 1 / -1;\n",
       "}\n",
       "\n",
       "dl.xr-attrs {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  display: grid;\n",
       "  grid-template-columns: 125px auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt,\n",
       ".xr-attrs dd {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  float: left;\n",
       "  padding-right: 10px;\n",
       "  width: auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt {\n",
       "  font-weight: normal;\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-attrs dt:hover span {\n",
       "  display: inline-block;\n",
       "  background: var(--xr-background-color);\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-attrs dd {\n",
       "  grid-column: 2;\n",
       "  white-space: pre-wrap;\n",
       "  word-break: break-all;\n",
       "}\n",
       "\n",
       ".xr-icon-database,\n",
       ".xr-icon-file-text2 {\n",
       "  display: inline-block;\n",
       "  vertical-align: middle;\n",
       "  width: 1em;\n",
       "  height: 1.5em !important;\n",
       "  stroke-width: 0;\n",
       "  stroke: currentColor;\n",
       "  fill: currentColor;\n",
       "}\n",
       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
       "Dimensions:     (index: 22596, dim_1: 30)\n",
       "Coordinates:\n",
       "  * index       (index) int64 1 4 8 9 13 14 ... 40956 40957 40958 40960 40961\n",
       "Dimensions without coordinates: dim_1\n",
       "Data variables:\n",
       "    QDLat       (index) float64 -4.072 -3.857 -2.109 ... -31.72 -31.72 31.72\n",
       "    MLT         (index) float64 8.489 8.362 8.201 8.275 ... 6.0 0.0 12.0 12.0\n",
       "    input_data  (index, dim_1) float64 -8.061 15.44 5.785 ... -34.52 -18.53\n",
       "    cluster     (index) int32 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 2 1 0 0 0 0</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-1f876314-8cf2-4a2b-bdc5-bdf86869d3db' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-1f876314-8cf2-4a2b-bdc5-bdf86869d3db' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>index</span>: 22596</li><li><span>dim_1</span>: 30</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-2e395ac0-c5a2-4596-ba78-b20334e7269b' class='xr-section-summary-in' type='checkbox'  checked><label for='section-2e395ac0-c5a2-4596-ba78-b20334e7269b' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>index</span></div><div class='xr-var-dims'>(index)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>1 4 8 9 ... 40957 40958 40960 40961</div><input id='attrs-fafbcdbf-c64c-40aa-ad87-3f0b1547c7c5' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-fafbcdbf-c64c-40aa-ad87-3f0b1547c7c5' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7792b90f-3394-4242-9e52-09705d2fb8dc' class='xr-var-data-in' type='checkbox'><label for='data-7792b90f-3394-4242-9e52-09705d2fb8dc' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([    1,     4,     8, ..., 40958, 40960, 40961])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-a86fd804-966c-4aeb-a6c3-fac302f6f006' class='xr-section-summary-in' type='checkbox'  checked><label for='section-a86fd804-966c-4aeb-a6c3-fac302f6f006' class='xr-section-summary' >Data variables: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>QDLat</span></div><div class='xr-var-dims'>(index)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-4.072 -3.857 ... -31.72 31.72</div><input id='attrs-8fca41f5-a405-43f6-aaa1-40a8ebed159f' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8fca41f5-a405-43f6-aaa1-40a8ebed159f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-3f4c82c7-8836-444d-a77f-1aa1477744c0' class='xr-var-data-in' type='checkbox'><label for='data-3f4c82c7-8836-444d-a77f-1aa1477744c0' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([ -4.07163665,  -3.85717051,  -2.10856989, ..., -31.71747441,\n",
       "       -31.71747441,  31.71747441])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>MLT</span></div><div class='xr-var-dims'>(index)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>8.489 8.362 8.201 ... 0.0 12.0 12.0</div><input id='attrs-5e93451e-b1ca-4610-a3da-c58f599e2c4e' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-5e93451e-b1ca-4610-a3da-c58f599e2c4e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-edad3a57-2413-4a71-8f5f-444b3ab63bb9' class='xr-var-data-in' type='checkbox'><label for='data-edad3a57-2413-4a71-8f5f-444b3ab63bb9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([ 8.48933828,  8.36187913,  8.20106486, ...,  0.        ,\n",
       "       12.        , 12.        ])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>input_data</span></div><div class='xr-var-dims'>(index, dim_1)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-8.061 15.44 ... -34.52 -18.53</div><input id='attrs-9827b407-c3de-4d31-b1cd-cc3591f178ca' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-9827b407-c3de-4d31-b1cd-cc3591f178ca' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-3e0c4b01-5c01-4dbf-9471-ea2fe9b9dd0f' class='xr-var-data-in' type='checkbox'><label for='data-3e0c4b01-5c01-4dbf-9471-ea2fe9b9dd0f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ -8.06101744,  15.44360718,   5.78491247, ...,  -3.49858879,\n",
       "          6.25316527,  10.77962379],\n",
       "       [  0.25396202,   0.24909554,   2.05052808, ...,  -3.64613497,\n",
       "        -18.26229707,   9.14857288],\n",
       "       [ -5.35286004,  -8.20867212,  10.3768513 , ...,  -2.6797055 ,\n",
       "         -5.89843019,   2.04507423],\n",
       "       ...,\n",
       "       [ -8.89105853,   0.95984786,  -1.7432049 , ...,  -6.15089151,\n",
       "        -16.70766272,  -6.1879611 ],\n",
       "       [-21.70877568,  -3.65336697,   8.99747845, ...,  -0.20209992,\n",
       "          4.20647611,   8.26071313],\n",
       "       [ -2.93157909,  10.88185274, -10.27416101, ..., -13.62778231,\n",
       "        -34.52002177, -18.53332211]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>cluster</span></div><div class='xr-var-dims'>(index)</div><div class='xr-var-dtype'>int32</div><div class='xr-var-preview xr-preview'>0 0 0 0 0 0 0 0 ... 0 0 2 1 0 0 0 0</div><input id='attrs-978cf8ae-e219-4e52-8e40-9b7be8e975f8' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-978cf8ae-e219-4e52-8e40-9b7be8e975f8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ea1ba1ee-6876-49db-843b-876b56769c2f' class='xr-var-data-in' type='checkbox'><label for='data-ea1ba1ee-6876-49db-843b-876b56769c2f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0, 0, 0, ..., 0, 0, 0], dtype=int32)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-8125b056-f5ed-446a-9be2-d9f42b26246f' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-8125b056-f5ed-446a-9be2-d9f42b26246f' class='xr-section-summary'  title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
      ],
      "text/plain": [
       "<xarray.Dataset>\n",
       "Dimensions:     (index: 22596, dim_1: 30)\n",
       "Coordinates:\n",
       "  * index       (index) int64 1 4 8 9 13 14 ... 40956 40957 40958 40960 40961\n",
       "Dimensions without coordinates: dim_1\n",
       "Data variables:\n",
       "    QDLat       (index) float64 -4.072 -3.857 -2.109 ... -31.72 -31.72 31.72\n",
       "    MLT         (index) float64 8.489 8.362 8.201 8.275 ... 6.0 0.0 12.0 12.0\n",
       "    input_data  (index, dim_1) float64 -8.061 15.44 5.785 ... -34.52 -18.53\n",
       "    cluster     (index) int32 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 2 1 0 0 0 0"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "kmeans = KMeans(init=\"random\", n_clusters=5, n_init=30).fit(cluster_data[\"input_data\"])\n",
    "clusters = kmeans.predict(cluster_data[\"input_data\"])\n",
    "cluster_data = cluster_data.assign(cluster=((\"index\", clusters)))\n",
    "cluster_data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "c5d2ab2a-d590-4e8a-93c6-121a585735df",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddZgdRdb/P3393nGfycxkJu7ubgRCSLAlOMEDwd09QLDgCXEgxN2FuHsyyUTG3e/Ydevu+v1xs2F5Yd9lf8sK+873eeqZ6a66Vae7us+36pxT1ZIQgiY0oQlNaEITNP9uAZrQhCY0oQn/GWgihCY0oQlNaALQRAhNaEITmtCES2gihCY0oQlNaALQRAhNaEITmtCES2gihCY0oQlNaALQRAhNaEITmvBvhyRJWkmSTkuStPFX8iRJkr6UJClPkqSzkiT1/GfJ0UQITWhCE5rw78eTwMW/knc10OZSmgR8888SookQmtCEJjTh3whJklKAa4C5f6XIdcACEcQRIFKSpKR/hiy6f0al/2rExsaK9PT0f7cYTWhCE/4AOHnyZK0QIu4fqaOVRhLu37jJQxWcB7x/cWq2EGL2Xxx/DrwAhP2VKpKB0r84Lrt0rvI3ivub8V9BCOnp6Zw4ceLfLUYTmtCEPwAkSSr+R+vwAJP0v83A8k5A9Qohev8VWcYBNUKIk5IkDf8rVUi/cu6fsufQfwUhNKEJTWjCvxISoP01Nf33YxBwrSRJYwETEC5J0kIhxJ1/UaYMSP2L4xSg4ndp/X+gyYfQhCY0oQn/H9BJvy39bxBCvCyESBFCpAO3Arv+BxkArAcmXoo26g/YhBC/u7kImmYITWhCE5rwd+N3nCH8ev2S9DCAEGImsBkYC+QBbuDef1a7TYTQhCY0oQl/JyQJDJrf14wvhNgD7Ln0/8y/OC+AR3/Xxv4KmgihCU1oQhP+Tkj8bXPQHxFNhNCEJjShCX8nJED7X+iBbSKEJjShCU34/8A/04fw78J/Icf976irqefDlz6j3trw7xalCU1owh8UkhQkhN+S/kj4P0cIBdlFrPp+PflZhb9rvdmZuWSfy/1d6/y9YG+0M//zH3DYnf9uUX4VWWdzyDmf9+8W4zfh4plsci/k/7vF+FU01tuY//kPuBzuf7cov4oLGVnkXSz4d4vxu6GJEP4L0L5bWyY9dzftu7X9Xet9edJbvPrQO/9wPaWF5Xw1ZRY+r+93kCqIY/tPM/39OZw+dOZ3q9Pj9vLlOzOpKPnHw6FfevAtXnno7d9Bqp9gb7Sz4OvFv7tyfPGBN3ht8pR/uJ4it8JneS786u8XqXJk9zGmvz+Hs8czf7c63U43X7z9DVXl1f9wXS8+8CavPfKP37v/BGgAg/a3pT8S/s8Rwpljmcz6+DvOHj/3q/kOu5Pt63ejqurfVa9Go0GSfttwwO10s37xZvw+/y/yjh84xcIZS6kq++ULGPAH+OLtb/7u2Y1WUpEASfr7rin3Qj5fTplJICD/Iq+ipIKF3yzj5KGMX+TJwke+uhlZeH5TOxqNhEb6+x5FRVHYvm7XX1X4pw6f5at3Z3Pu1IVfzRceG+qFLYi/t5+l397PTruL9Uu2EPAHfpF3uN7Pd6Ueqn2/bN/v8/P5WzMoyi35u2QLRieCKv4+ksnOzOWrKbNQFOUXeaVF5SyauZzTR87+Is+jCNZUePEqv629YD//fUNmWZbZvm4Xbud/2KynyWT034Heg3rwxBsP02tg91/N37JyO69Mepvc80GzgMvhpqbC+jfrHfJ0KEOeCf2r+V5FUOgKKtaDO48w5ZmPyDj6y5Fc3z9dza07VpHUMvUXefXWBpbMXsmxfScBqLl4kd1Tp6L+yov8lxiY5uOV4Q30S/X+r+VkWWb2J99RnBdURId3H2PJrBXY6m2/KJuclsydk2+h9+Aev8irIYOj4mMqOQ6AXZSgiL8+4xn6TBhD/5d792dUl9dcVgxZZ3J45aF32LZ256+W7Tu0F0+88TDd+3X51XyRsRp1xZNQG+xnh91JTWXt35Rh6HOhDH36r8vqcXsv37/9Px5kytMfknnyl6Q0OFDPAyc2kqj9JSHUVtexdM5Kjh84BUB+VgHzPvvhbw9SJII73PwN/RzwB5j18beUFpYH5dx+iCWzV2JvdPyibPOWqdzx8AR6Dej+i7wj9X7eyHJytCFIeIU5xb86yPkzwsJDCQ3/2/1c6VVwXyKZcycv8MpD77Bjw96/+bt/JSRAo/lt6Q8FIcQfPvXq1Uv8VuzZsl/0Thgm9m49cPmcvdEuzhzLFEII4XF7xbF9J4WqqkIIIZ68/UUxst24v1nv+18/Ij745tFfzVNVVUzLdYquO62i3q+IQCAgTh89KxRFEUW5xeLgziOXyy4r84guO60i3xkQQgihKIr45oN54kJG1mVZ/yzb7g8+EG+Ehoiyizli4TfLhNvl+dX2d23YJXrFDRH7t+3/1XyXwyUWfrNM5F7IF32TRogFXy++LLe90S6EEOLcyQti1kfzL7edcz5P9E4YJtYt2nS5nv3bD4ni/FKhqoqoUc8KRZWFW60Vi+UR4owy7/Jv/yfeKdwi3i/a8us39i/u4dCWY8Tz9752+fjo3hPC6/EGj4tPCNVjv1x+x/o9onfCsJ/dW1uDTZw9fi5Y3ucSSsHhyzI9MuEZMbrjdf+rDEIIMeWLh8THc578qzJ+8tqXom/SCGG3OUQgEBAZxzKFqqqiILtIHN517HLZpXNWij6Jw0VJQZkQQghZlsWMqXNEVmaOEOLn/fzNB/NEv2YjRWFOkVg0c5nwuL2/2v7mFdtEz7ghP7vmv4QzoIjvit0iO69U9E0cLhbPWnFZbrvNIYQQ4syxTDFn2veX2754Jlv0ThgmNi3fdrmefdsOitLCMiGrqjjV4BeKqoqqsmrRJ3H4z377P3Hn6AfFwzf++r37MxRVFb1314rnM4N9qSiKOLr3hPB5fUIIIU4fOSOcdtf/WsffAnBC/IM6p6UOsTJB+k3p92jvX5X+7QL8HunvIQSfzycWzVwufD7f5XOfvzld9EkYJuprG4SqqsJWXn457+zxc2LLqu1i8ewVYlT78ZcV5P/EXdfcLSaOv/cX54/sOS4GNR8tdh+9IFaWe4SqqkJRFJF1NkeoqiqevftVMSjtyssvkUOpEQfcq4Ss+oUQQthtDjEg5Qrx9buzhKIGRIYyVzSqRUIIIRRZFo6qKvHj2p2id8Iw8d1Xi0R+VuEvZNixYbfoETv4ZyT4Z6jV2eLw4vmid8IwsWvjXmGtqhWKogghhMi7mC+++WCekGVZfPr612Jg89HC5Qi+jD6vT0x/f7aoqbQKIYIKbUDqFeKlB98SqqqKrLM5QlEUoaqqyFXWiyONlaLX7lpxtN7/CxluPl4mbj9R9qv3taGuUYxoe41Y8e0asXnFNnHu1MXLedXlNUJVVaHaa0Tg7bZC3jHtcp7f6xHHVi4SAf9P7X308ueiT+JwYbc5hKIoorrCejkv41im+HHtTrHg68ViVPvxf1Xp/GngXeLOKx74xfkDOw6LQc1Hiz1bD4h1izYJVVWFLMuX+/mJ214QQ1tdfbl8mcsvvjpeIvyKevk6+6eMEjM/mi98iio+z3OKQpd8+d7WVteJTcu3id4Jw8T305eIwpziX8iwZdUO0SN28K8SQrYjIGYVukTnnVax2+r7WT9Xnj0rdk6ZIhRFER++9JkYnHblZaINqF5xoGyOcCt1wfvqD4j+ySPF64+++7PnWFEUsfK7tWLHhj1iUPPR4vTRs7+Q4dbRd4gHbpr0q/fVrdaJFfI1Ik/ZJNZWeMR5e+BynksN9nNlWZXonTBMzPpo/q/W8VvxeyjoVjrEmkTpN6UmQvgPJoS9Ww/8bIbgVq2ivKpQ7N4cHD0fnzdPvG4xi+rz53/2u+P7T4pnJ74i7rvmEXF074lf1Lu06naxrPqOn53bt+2guHP0g+LpO18S1qpaIUTwhdq+brfonTBMHN17QtTV1ItThzPEro17haqqIkdZKxbLw0WjWiAa6hrFjKlzRVlRmZBlWbjUarFEHinOy0vED9OXiOxzuUKI4CgqP6tQDE6/Utx7zSOisqzqZ3Ls2rRX9IobKvb/eOhn5x1qpajadKvwT+0l8rMKfzYqXDRzuZj32QLRr9lIUVtdJ2RZFiUFpWLG1LnC1mATWWdzRO+EYWLNwg1CURSxc8MecepwhqivbRAHdhwWvROGiT1b9l9WeFUeWTx6pFLcefUjv1BYi6tuF8tq7v7FPT2066i475pHxDN3vSxOHsr4WV5WZrD9DUu3BBXShW2isb5a1HiDSk45v0UE3mojlNy9QgghqiusoiCrUOzZEuzn5fPXiD6Jw0VRXsnP6j28+5h4duIr4t5rHhEnDp7+hUzjek0QEwbf9bNz26u94pb9VeLp+94Qddb6y/28ZdV20TthmDh5KEPUVtcF+3nTPqGqqlhY4hZddlpFgUsWdT5FfJnvFGXWRqEoiihzy6LrLqtYWOIW84pcIsfx02wxP7tQDGo+Wrww7l7RWPZzEt22ZofoFTdEHNlz/Gfny4srxIQ95WLwXqvIcwYu9/P50xfFktkrxM4pU8Sb4WHCabWKQCAgSvJLxIypc4Xd5hC16gWxSB4uCpStQlEUsWP9HnHq8BnRUNd4ebZ9YMdhIV8i3sqyKvHC5BfFBtcDolL9uRyLKiaIlTX3/OKe7tt2UDw04TGx2/eKqFEzf5ZXq14Ui+TholDZLlRVFTvW7xGVNcXCrdb9op7fit9DQbfWIzYmS78pNRHCfzAhuN0esW7DEuF2B80ra+QJYrv8uBBCiIDqFg3FxWLnu1NEjfucWC6PFVXqqcu/rbPWi2v7TRCrL7wqHGr5z+r905DbxYRhd/6s7BO3vyDG97758nS8tLBMDEi9Qqz6fp1YNneVqKmyivLiCvH9V4tE74RhoiivRDiVGnFGmS8UNXBZsR7Zc1xcVJaLavWM8KgNwm6zi/4po8Tn0z4Q2cpqoapBJZh7IV8MbH6F+OzBh4Qq/zQy3r1lv+iTOFwc2H748jm/PyC+PfawWOa/Sqg1QWKRZVksm7tKvD55ihiYeoVwOd2ivrZBHD9wSiydu/KyPEf3nhB+n19888E8UVtdJ/Iu5oveCcPEopnLRFlRuaiprBXL5q4SS3LqRM/dVlHuCY50G+tt4pph94vHNmaKBr/y070bfJu4ZcTPlWxxfql4euLLYnyvm0Vjve3y+QO1PtF/T604Z3WKmR/NF9XlNcLtdAshhLjjeIO48mBQUShel5APzhVqIDjSvbLz9WLyn54SQgjhklVRXlwhZn/8raj0nhPL5atFtXrmchvWqlpxdd/bxdNbL4gyt/wzua7tfYu4eejdP5X1KmLS6QYx5mCdcAaCirYot1gMSBkl1i7aIJbNWy1q7G5R5pbF3E+/F70Thony4grRUF4utnw5Q8iBgNhV4xWdd1rFsXq/+K7YJU41+kWdTxENPll032UVH+84I47OmnVZkWdn5og3wkLF/DFjhBz4aSS99Xy56HnrO+JI0U8zH7/PL+4a/aAY1ucOUXDJDCnLslgye6V4edJbYlDaaOH1eIXTahV5u3aKo7Nmid2b918msoDXK/bMeF84rTWXBwHL5q0WpYVloqbCKpbNXSX2T58h3o6KvDyz9qj1YmXF9WLFq3cJd0PDZVmu63ezuGP0zwnBphaLrxe+KK7tc8vl90QIIcrUw2K5fI2oU7LFGWW+cKtWEVCD/bxFniTWy7eL/1/8Hgq6jR6xJVXzm1ITIfwHE0K5ekQskoeLcvWIUFRZFCrbRbWaIUrV/WKxPELUqUFbvUu1it3yC+KkPF3sl9+8/HubWiwWycPFcfnLn9lKp299UHzz40OXj5fMXiF6xQ8Vx/adFEII8ePaneL2kfeJVx56W+ReyBeBQEA8c9fLYmjLMcLlcIkDxzeLeiVPZCtrxCJ5uGhQ80WuskHk1RwTqqqK5fJYsT/wtpj/+Q+iOL9U1FRaxSn/XLFYHiEuystFQA0SXNaWZcL/ZmshH/nusiwXy/eLueWjRE7lTyPz76cvEb3ih4gDpzYKIYI29fJt34o+icPEnE++E9aqWqFa84W8b6Z4/t7XLvtRas/sE8qpFeJCRpbonTBMrP5hg8jKzBHrF28WTrtTDEq7Urz04JtCUQPioj0gnj9WKW4deb/YtTE4Uj9Q6xOdF2eK5ft/moHd/M2P4o45uy4fq6oqdn31vhiWMlSUFf1EvM/d86r4/Isl4uGMRmG9NBM4e/yc6JM4XOzffkgcrfeLLcXBUbaStSM4Q8g/KGRZFpuWbxOnj54V26q9otsuq8i6ZJJwqlVil/y8cO+dKuSVT19uK8cREJ13WMXHOT8pKSGEmDB9m7hr7u7Lx98WuUSnHVZxoiFIwBsqPeKmw7XilcenivysQhFQVPHw6UYxaG+tcNicYu2+syLXERAHv/xSvGY2iZqsLLGs1C0O1XlFQFFF3z214uXzdjGr0CVK3LKo9ipiy6uvitdDLGL5uVLhlYPP3KGvvxIvRUSIfUtXXpZlW5VXdN9lFUfqfjKHLvjsO9ErbojYuHxr8HrtLvHtl8EByLdfLBS11XUiP6tQfPfVIvHDDTeID9KaC1VVxb5tB8WGpVtEyZEj4jWzSZxasECUnz4tti1aK+w2pxiYeoV4/ZF3haIGRNnJk2LR3feKW4fdI/ZtOxh85jZuEK+ajOLEtz+Zd24ddo+475pHftbPS3d8JL6zjRBOteryuT3yy+K0PEvsll8UHjU446pWz4jF8ghRoR4XleoJUazsvjwQ+nvxuxCCAbGtueY3pSZC+A8mBJ9qF5nK98Kn2sUh+T2xUr5WqKoqHGqlOCp/IgqV7WKtfLNwqTVCCCFOyF+LLfKD4rQ8WyhqUIlkKHPEQnmYaFR+suO+OfUR8fZHj10+vqrnuMsP/9nj58Tjtzwnbh1+r3A5XOL4/pOif/IosX7xJrFt/RbhVq1ik3yvWC/fIRob68X6rT8If8ArlsqjxSH5fZGtrBbVyhlRXhZ0Bs748jNRqGwXsuoXOcp6scQ7TNRkfS1UOSDUgE8EZl4rAlO7X5aloXaP2FwxTDTWBV9WRVHE4PQrxcQrJwm/PyACgYDYM+cL4X69jSjctVr4fX6hnFkj5A2vi8A77YXXWi5OHc4Qy+evEfLKp0Tgva5CCfhE1prZwu+oF+N73yJuH3W/UG1V4seVm8WhsxvFEvkKUa2eEQ6bU9wy9G6x7e1HhVoetCtPvOZRcV338ZflO7DiQ3FgzaeXjwNVOcL/Vhvh+PGrYJ8pqvg01yluu+ph8eWUmUIIIdSGMhH4bKioO7FFvPfsx6KqrFrIsixGtLlGTHn6Q6G6GoS852uheuzipQffFFd2ul4IIUSJWxZvX3SITZsOiHE9b75sypM3vSVs8+4UX+Q5ReCSmeuTHIfotMMqStw/jcLveOZr8eBrcy8f99tjFfecbBRCCHGqwS8mnWoUNx6tF25ZFQdqfaLHLqtYW+EWmwvrhL2yUow/XC/GH64XtS6vWL7nlHAFFNFjl1W8ecEmFpa4xelGvyhwBkSXnVYxNdshNld5RcDrFeuPXRCddljF1/lOIauqCHi94vb1mWLQ7prLsmzPKBA9vz8pjmYHTUkBv1+8EhUj3hh9kwgEAsLvD4jP3pwuesUPFRuWbRV+f0CsX7JZTHn6Q9Gv2QhRU1YpCvbuFcfmzBHP3/u6GNpyjPB7vWLP1KnC3dAgPm7dSnwzeJBoLCsTGxdtEIfPrxdL5CuEVT0nbA02MWHIXWLuphdEnRp0jE/v30982LLFZfmmDB0jPhp3y+XjrMws0Tt+qPhhzg/BPlC94qT8jdgo3yMylOA9tqvlYo08QRQre8RR+RPhUq1CVv1iuTxWHJM/E/8/+D0UdFsDYke65jelPxIh/NGCov5hNFLAObGARgpJk66grXQjOWINO9TH6KGZjEWKx0ws016Yw7J5q+mlfZQ0aRQXWUKJ2A1Ae+kWTIRz5i8+i1p+2k/5qWBoZanYx8QjTp755hZk4eNY+VIyTmYwe+0XlFg2UdNzDqOuHUK/4X0IGXucDeqd9ONFOkq38+OaPbxz91wuZp2li3QPXXmQU2I6+WIztqSDrDu5mA4PWTnr+BgpYx2txNWMybmZqKVfIE6vQNIZ0PS/F+FxomRuACC8Vmb0vBrC6oPhgUViG4Pe9DL5vVvQ63UcWbOa515dxaGWL9F8yDg0mWtQN7yO8DSgefRH9Dmb2bp0A5+9MR3X8FdZF/McjReP0erMx0hZP3LfU3fy1ufPo3x1BSO1e+jWqTep6mAiv30bc/Yalmz+lJGaPSgH5yECPqa+Oo7l12eh5uwCoF/dQfpZD1y+l09UxjGl24eEDJkIwKktP7LofDnj5n7K4689xIISD5+XyBAWT1RCIi9PeZCYpTfA6RXcfP+NXHn9KET1RcT+6WDN45qbx3Dz/TfyXYmbe0/ZeL5NCPERFuKTYvm0SmJ5uQft2DdZNnIW84s97LQGQyfvS7cQrpf4PO+nGHjNiSNw/DAAW6t9uBS4J9WMWxHML3FzyhZgQc9IlpZ5+KbQzag4A4OiDTS+/AhfdOvK1I6h3JdmZkutwjtKKpl2mUdbWng43cLHeS7WVnrZVxdgc/9IilwyU7IcbKwXjOnVjknpZmYWeVhf6UNnNDIxUUPLac9wbs0aAEIKsxn41LWYKoJfiMxY+AOSx8ktj96JTqdjw+zFLPpmGY+99hBX3TCSDUs2M/WFT/F6fKw59APZyxdzfO5cNr/wPC9/8AT3PXUnObv2suOdt7m4YQPDXnqZ8V9+yeedOiIf3ELn9n1IEYNZc+Nkclav5Pu9n2MZdoKjy2cg+3wMeOxxHBUV5G7/EYAYUz3Rxp9Ce8vazebm+TFcf/MNCCEoEjvIYhntpBvoprmfC+pSLqiLMRNDiJRAV839bFMnUaRup610Pc01w34PlfD/DY3029IfCf/nCCGUZjRnOHph4aj4kBASCSWZKNpwUv2aUnUfV2qnk5NRRKHjMPnqZtpLN9Oa8RwW7+NUqzBKYSTSh3py8IvgdhDXLvYwfmFwIVaFeoQQTTxtUnpQJLZjHrefBWffwhZ2hgpxBL1RyzPvPM7NQ++hfFMc3aQHsVHEUfExfW+P4dM9D2LoUEyGmMPJI8dJPvICkbQgQ/2GsPLVDHLew5WZY1DWv0JV41rC290HLQbg3D8Ff6Aeqf0VPPhjW56dsiN40UKAql6OT2+2eAEvqiq9ew1AtVfRO/N1PnysM4NvvQNxYiFi42tIAx9AM+RRxJnVqD9+yFM3p7F66eM0nD3AB2/OY9cJK5qRz3C8No73nv2EsoJSpFHPIkwRGD4eywDfY2hUDeLiDkT5WTQ3fAwXNiPObyKpW3804YmInD0AVNd5sDYE10gIdyPXnp1GekpLJFM41WUVbJpwPW8cW8BtySaUUys4V1XNCX8EuvtXoJ5Zi7LjE6SkjkjRqcTddRsva1vgDEtF6ng1VksKr5naknT7zaSbtXQI0/FutoPd8W2Yt3E62T6J3bV+1lV6uT/NzHXNjDx/3kG1VyFKr2FAlJ5Mh4xLDt68od5TDPQGV3wPODqVxYWv0ytKx5Y8K3tqA3zaOZzD9X4O1PnRauD1GBczUxOJad2aER98RLZT5vWLTlJMWp5uZeGCPcDn+W6ONsq81yGUVLOWT3JdbKj281ybEP7UzMTrF52srfTxYJqZ3pE63rropNGvMqxtMtUTn+XrxP4A6ENNhGsD6C1GAGZHdsHxp/toc+WVWEvKOPTCE9w2og23T7qJ7TPmMfX5adz31J1Mnnw957+bw9ZXXiF9yBAGfv0de348wtfvzSG31ssVb72F3mRk/eOPUVdUwsh33qU6LJVrOzxIV8dTKFaFnet3kbEnj87bH+LQvTPJ2rWetlddRXbrkWzcfT747s1OJ+zL5gB4RQN2TRFDxwwkNDwEuyjmqPiEDtxCK2k8qxesp6DuKHaKuUr7DXnqRjLV74ikNaGaJHK+j+O+nu/jtLv+ecrif4EkBXc7/S3pj4Q/mLj/OLw0YCUTGS8RtEAlwBkxkx6ayci4cVLJEeUD5v/4Of0f13JafEM9OXTR3EsoyewVLwOQwkBkPNhE0c/qF0LQQB4hJKInlFNiOvF0I87YmvNiMY0U0UfzDIcjnmPYrZ1omzCQ82IhJeymGw/g1lZS2mYuBsLoKz3H7DdX89Vb85EkLWNdn2Dc8iXS9i8wtBpD4QP3st75NafPnUQ7bgrbHk3mkOYjJGMo91yTxutdjiL8Hho9MPuIBYcXAsLNjzfYsQ7ojU4y41v9EjqTiRGPvYy+YDdi6/tIfe6gKH4MhWtmIPZ/g3TPIgwaldhjn5Ccv5AVix7num4q6q5P6RxazmOvTmJQ4yLEoblo218Byd1Rf7gbzbVToeoi6oFZkNIDUrqjbnsfyRIJ4YmIqgsIIXhifQxPb4gGIO9iAZ1zf+QuS3Ax4ANlZiqnLeWKZ5+hnmzU7R8wtfBjFnbWoKx9EWGrQPK7KLj2G/5k7YgQ0DpES642gTEJr1Khi6BNiBa3IviiwM1zrUNwKWCqzUFZ9zIruxuRVZiW5yLLqfBEyxCSTRoePWsHYHisHpcsKLi0qHDirfHcflMcqhDMNA3GE9MGiyTIHNqVu3bMolWIhrnFbkrcCi+3CeWeYgPRN95Gh3HjebHVePbUBnjVUEGRw8tn+W5iTVqmtA/l+xIPMwrdGDUSc3qE802hm28KPVyTaOL6RCNvZ7k4aZN5o10oGg28nVmPKSKC9Oxz5D35HH6fn9ou/Vm39DwNrbrgsDu5ePAM2gkPojebee3xDzmZ0I/7Pn6TrHVrOfzSUzxzz3AGXTGAje9MZf8nn/DA9h0ofj9fTJ3PxqVbeOnDp4kVbna89RaO+kaGvfshMxbs5qPvD9B97GgGdE9jwVVXcOO8efx4sZHt074gre9geqy/nuxRiwiJjaX9HSlEjg3uX7TyZlg7MUislWfO4i1zkKwOBGCveIUI0umouYNacYHP357BwVcj6ed4j7eemEpFYQ0yXrprJnFS/ZK49lpatW+Bwaj/p+qL/w06rfSb0h8J/+cIQYcJI5HYKMaPnTCSUQiQq64lUmpFc2k4RezggrqEvtJzRJDObvV5dJjpwC14qKNU7CdW05kAbirEEQC06NFiRBYeGikighZsXvEjc3tJtGi4nQtiEfVcZChTOKvOQ9a4uP/ta8jr/SqpDKMFV5LJfBopopt0Pzms5ayYzwurruKVZX/ilJiOp2If0sTvIWcXu7/5BIu4jVMvtmPKy+/gj4okVTuacg5jU4vpdusgjjwcQqOmhHN1euafCuV8vQ6bKMJjDkDbYeReyOfhaTlkxE4AgwV19XPQvCdS79s58M1HPPjxBRomLOTgtn2Ibe+hDH+A4jtuIensx0gZK9GMfJqZa4r55sN5ODrcTPXY8axKnYJn1O0oHiezP5xD43WzEKWnaNg5n8aekxn/XRzb1uyE2NZQk4OQg+YPrSE4qs07eoA3NxlojO6OemELCw9ez8SxfdFERLFLeZajkwfjGvUmW75diJq5AU236yG2BfLpVQRU6GJwM/3o3YTVnCXGoCHfqWKXBalmDQEVFpV56BKu41FzIWrmetbmVTC1YygpJi2TM2yEaiUmNjdR6VXZW+une6QBpyw4UBc0I33U4RWmtX8RpyxYpu/O7o6TWFPtZ+f3Rxl33VXMLPJwwaHwaZdwvi5w4VQl2k56grvvmsI1jQVcF+rl4tUDCfl2Gk+2tPBDsZuvC1zckGTipmYmPsx1caDOz5zu4Wyv8fNxrpN708x0CNPx/Dk70QYNd1UeJ3DPNdTl5zOgSzq2Z1+hyCdQvH6EUBGBADWZmYQtmcdoeyHlp0+j37mEOyYMQYlLYuWDD5A+eDAD7pnIhy9+yuITVm7bsp09G3ax+fnneObx6xh93Ui+fm8Oi9cfoe/bH7D5ZDlvfL6BGyZey9grurHj1nHcftsVeBsb2fnmm8yZ/wqBXas59NWXdGt/L9ntjnB+zRpGPpxGaXUushzgqg+NXDEl2M8XFq4nq8thIhtaU6juwI+TjtyBFj27xbO8cLALL7z5INs/+5qtq3YQmT2OECmOAnUbCgE69GvO1QvraTD8+tYk/2w0zRB+Z0iS1E6SpIy/SHZJkp6SJOktSZLK/+L82N+5ZTToEcjIeCgWu2gr3UAjRZSJg7ipYQhTOMcP5LOJftLzaNGzV32RVM1wjIRToG4lRErARDQVBAlBRwg6LNRxEQUfsVIn6hP20Kx1NGZTKDmspwO3UiYdoIxDdJLu4pz4ngjSMUnRHOY9OnAnZqI4I+bRnKG05QbOhU6nJKeKXjmPE7VsJpsWbaD0ytm8PCefj56fwfNvPs/NG2QOqVPoKN2ODiMXxVLk1N5UeLRknDhP+kh44AQ0HwJWEdzDKV7qyoKvl5DvCCNpzP0UzH0OFQn/Ve9SvuJDbo8/yPcr3+Hi5hU8++Z66ka8R0V0NUcNM6if8DBSm+Gouz7j7hHhPPbcbYy97mMOnUlGLUjj4YmL2Bz3DPMXH2PFmpPsip3MdU9spUokYIqIYse63UjNe4HfAxVnMTzyGIaHHwZgNNuYOVFHbEIM31sN+EMTGZIQwqQMG5uyXqVTyIssOlTAG++s4OyIBcwNGY479xBti7cxIdnERqsKfhcaxYdOgoAQuBVBl0MfsE6/hWynzC6rn2+jrubIg0d4vTKSNZVepnQMbqnw+Fk7Y+JNROgk1lR6STVridJL7KkNEsL5mD7kRncns9FHpNdKtwgd26v9REWG42nXldUVPialmdhm9bGvLsBDaRZmeCJoMag3Ec2Tea5YQ/dZC6i54UG+KHBzdaKJCckmPspzUeNTea1tCN+WeFlT6eWLrqEca5T5NM/FW+1DcCvw6gUHd/RowdnGEObOWkePQT1RtVoyT15EOnMa/ZyZkHWRM06VriE2evbtzP6PPybBDH96dCKvb83g+LuLuPqLr/ng1a+4eCaHL757m62zFjD92x1cPWM2uXmVTHv9KyY/MYErBrTnnWlrSOnUlolP380bj75LdFIice3as+f99xj6wotc3LiR4j276T/5EQ5+/jmmmljMlmjOrV5F/fou/PiwjayMHAo3myjdaQYgd8dOIlNTCYmLY+XMrYj6SFI0A9mlPo2RCIbGP8mFzEVkfDKFBYveJD+7kCL3IRyU0koaS6nYjYwHlV/us/WvgkYj/ab0tyBJkkmSpGOSJJ2RJOm8JEm/2OlRkqThkiTZ/kIvvvFPuaZ/RqW/BUKIbCFEdyFEd6AXwY9Hr7mU/dmf84QQm3/PdgO4cVGJW9TSjAE0kEu5OEis1JF4upEpvsWHjV48Sqb4jgbyaMdNNFKAlbPE0x0rZ/CoDUTTFgdlqEJBoKAi00gBEhIRIo2Qwdk8uKw9WeZvCaMZsXTlglhMa/ctfP/CIeqq7ETTlgKxmZaMpZidlMpHSMy8j3NiAefzj5GUMZn3b1rFjClHONVtKu/NOMC+hu288PFjHNx5hB/X7Kad7gaKnceweWpwH2/N/GcOonMksGCYhl0/XECogrAECSFg79ILHPtUi84bzcGdR2jftQ2lBWXc8l4eu2MeZHPmTh6Ynk1ez7eoXTubvvY1zPzyYep3rSb5h/mkZk7Gs2wb6sE5ZHd+jvDCLVzLam64Ywy9sr5j+LkU6mQ9e1r04NZHb2f+5z8Q0r4/V4c3cGrKK7Tt150zSa3xJHYCSULU5BJo2YpAi9YI2Q8NxUjNOmP1q8yiO3OGz2WH3Ui+U2ZUeHcOlIUyI7Q1z238lqIWnZhR6Oa7EXP4esBX7K31c9qj55Or1rDZ2I0Kr0rdpq1cuWM5hrJTiKwdzLd9R5cwLdML3PSwHub51ha+LPBQ6JK5I8XEBYfMOYdM90gdJxoCNARU2ofpKPSoCCFQhEAWgn45C9l6/Ab6aeu44JTpGq6j6/oH2Zz/DENMdr4v8XJ/czO7a/3Y0NDypefY4DFxY5KRWWnD2OMz86RUxfRCDyfOF/GcwcrCUi8H6vy81jaEjVV+NlcHeK6Vhd21AfbWBrg52cTx6gbq4pNJa9+KHRv3kooPw7EjnK1zo/bpS2DSZNTOXdjvMrL38y1YmjUjf9dOknv1pjI3n+jbh3BfpI/FGRUcP3mRFz94ih9nfUfdqu94+9NnOLBqE+UzP+CZtx/FumwuWZ+9y0Mv3MeGzsPY3mME428dy4IFW5CHXIvfYsc9Pp9+jz/Mrvfepe3VY7jQfgyffbGKpCHdcPUppmfXBIY7T+PNPIq9QsFeruD1+NhQE4p38A1UVdSwYdp5yr/uT9aqzeQ8cYB2zpuxcpbi0Zu57ewCPO0bmTPte6xzhxBJCyrEURopIJE++MS/57smEr+rU9kHjBRCdAO6A2MkSer/K+X2/4Ve/Me3Vv4V/KdMaEYB+UKI4n92QxZiSKIPjRRQziFi6UQ46VwUyzETQztu5jAfEEoy6VzBIfEeSVIfDESQo66mlXQNfpwU8SPxUhcktHioxY+DAE4cogIjkdgpw0s98VIX7BTTjH6c5EvCRCqn52jYuvAQCY0jqeEMYaRSwm4iSMe6ogsvjpkHayew7QU/055YwFf7nubkwQyWbNjN5wcmwcA9aJKqGXnNUL77chFxtSNYOSacN2+Zg/ncKM6v8VCcX0JImIW8CwU4tzRwYWw+zu0N7JpZSPbiUKqPn6G/9Rg33jiUGe/PISo2inZjBuO/YimPrb+CIzYLK75cR36Lxzk5YxarZuyguP2LvHPjHD7bF86+sInc8+hitvmGs/98GOriz0lsnsK787K46p4b2O03Y/jTn0hJT+bTN6bTecRQas6do9+Dt1F5xTWc9EQyY7GXfRvP4Swpx1lWQXlAy/QWj3Cu8z2sz2/AJQuuTzKxuMxLrFFLX3897w6/hevrc4lLTeTNLBf3NzcTptPwfYmHASYH31u/5lxlFYVuhYHRenLOZLH3eDafjFiII64DdcdX08Ik2MRaWPYY/euzGBNv4PlzTobHGbnRvo/2O17m5iQTNlllb1k9zymH2X78enDUEGMvIsJRilRfjMYSTYbHSINf5UpTPVJtAc2at6fT8tv4oXwqshDsrfUzJs7IaVuAdLOGTdV+Oodp6HtiB7Nue4wHRBXuOXP44fmpvNbOwsH6ANutfh5vaWZriY2Gk6cZEavnmyIX14XLbMm8l9YbJjP6hpG4XW4qiisxjB9PVvMOwaCBqipAUPLJ5yS89RLnvFo2T99Fmyef521da6oefp3WffvwfUIXrpz7BTnn81mxK5ve02axZMFmtmY7GLhlP9OnziU3qiPJk19k1kfzGV6YQcrapezdeoD0Fsm4t62gx+N3kuU+grdHZ6LS09nywgsMGtyVqKPr6DrlekyPaAkke7FER1NfWMjY712M+tqFo7SYNMlGn34d2bB4Cx6nh/G3XsXRmTMRR/TEaDpyVHxCK64mJD2Wc3Gf8sXJifR/3MBFVhBDJ6JoQzmHqBYZ/2yV8euQfr/N7S5Fw/75YyX6S+n32xf978B/CiHcCiz5i+PHJEk6K0nSfEmSon7tB5IkTZIk6YQkSSes1r+9G+mfYaeMIrYTLbWmBWPIZhUGwujEHZzmG8JIJo2R7Oc1WkvjCSeVDDGbNEZSx0W06LEQR4H6I+GkISHhFrWAQCA4OLueU5+GUs5hQEIWPvy4MEhheKglxXYdi+Ys4s6XrkTTPgcZHx7qiKItCh70V+3i/mcm8vGj39MmKZZH5nchN+0zPtn6CD0/zMbV/CjKuuuYevtyxk4czE3zIsgwfMXNw/uSsm8RHZrHoDfo2bv1IOmJYejLc6kmkm0ZLaiTIjGU55LeLIJdWw4imcy0TAgj/fAS7pkwkHW3PUbjMzbClBv4NHEAqYs2cmjBairPnqXve58yb+Kj3DqoOd2iYNcLL/PoM7dzetqX1Fa7SerWnXkzL1JW66d+zQomKBXMzm7kpjefoOidaTTcOplcjxHDoX1c8ego6j5+m8x73uJY1zHoPp6K7tOPqPQqLEu5BXdiF3585AXSpn+MAM47ZMYlGPjipU9JT03g+k7JPH3OyfhEA0n1VUzLdzM5XqX5wU2oR3/g0RgbrUK0bKz20eGqYVw1+Q4WlXpZ2uYR1t24jnfz/dhT+jLbMYGJ1zzH7VEqqRYtX+a7eMKUT1TBbroESlia8xxX73iIliE6QhQ3wlHDF+efY9qFlxGuOjCHM+TIu6w6PZEBFdvB70LSm8BVR3Ln4awpqObZiAqM5SdQFIUvDt/Fk/4DvHDuLe5t/JJH3nyIGYEYWrz+Mh2nTeXdbDcvtrFwqjHAscYAt+QfYdHkV7jTnU3MnBnMeuQlTg96nYHNp9Fq2EB0Oh17tx2kt1pO14qdaE8cw/TMY2gvnMfVUEdaWjw76mWIS0TEJpP/5Sy6XXcjUye9SdKSb+ntqmLlt2u494WbOFx2kOK8Eh589yme96Uw6P3XMMYlMP3rVUx6diLOVx6geVkm/W5oxdjvbUguG0fPmiidfjUfPbWAvs88QX1+Pt0T9BQ7IX89fD9CsOrjExjDwnBUVoEQCKHiDamlYxsnrbuns23NDlLSmxGW6sbTtYweE+/m9XtmkvFGGunSlRxiCi3FGEJtJs4wh67chwYNOazGuP8G3Nt+bSD9z4fEbzMX/RaTEYAkSVpJkjKAGmC7EOLorxQbcMmstEWSpE6/4+Vcxr+dECRJMgDXAisunfoGaEVw6lQJTPu13wkhZgshegshesfFxf3m9mLpQF+eJ09sopxDDOBlzrMAD/V04g6O8jEpDCSG9pwUX5LMQJxUEC91IYCXbLGa6vkD+ahDGYEGMxlLPZSXlSChQ4OOOls5rnI99WQRRWuK2I5eDWH5m6fQlLSiMnIzTx5Nol3reqr8GUTTFgUvoOLDQXhtL+Z/uoA7Jt9CYOVMyp46QUzDIPLip9G97jZqOEvLoTbunNOaqg6f0i3iRt7tkEVch06YQkMo3bKWthFg27mO0a2NpFWcIMxTS1tfKRZHNS0qTzEyzUDZvt3UpXUne+MGTOFhRLZozcJCPSktJrF38Ciu3zabqFXzKDlyhEGvvcWbr84idMJDHLZqWXKojMGPPUb+W0/SYdRwtj35JacfeQ/ZYee29gaU7UuJW7+E1PdfY9P0H2gTbmCvJYWi5O4sP1tJqzAj5UePYE3pxJk6GfHYk4hHHqPIreKWBUZ7I+WFZQzvmMLCUg9+RdA5XE+FKYwR44bx0UNv0HvFPAZXZvPB+Pt5xJlL5ebtvP76EvbfupPPPS1ZV+nl3YYzrH7lI4oXzGVDSgEzijzUltXynfEIrRbfxM23DGXpM3F02XQfw6K1RFWdRtNiAATciOM/0K5ZMtrafIQxDPxuRH0hGo0WjUYDDaWgM0JlJi0jQ5Ay14I5AlF0BJI6EnV4Bltzn+C24u95ZN/DrCh/D43fzYTyFUQ7S4ns0Ju7rG/xrjmPrU4tskHHuEgPX56v4uOkOo41yIT0787Uu2Lpue8xpo2LY1q3XbQP17P43CN0r1xFeFQ4x/ef5P3a73nh7KtoA+5geLGrkSU3FvD+3dFkTJ9PUu55tvvMhAuZxIIsCrMKuatnKtOeeI8uvTrR4jYrXd/OYfJbdzPt8Xe5+vx+Kn5YwslDGdz6wE3M+eR70q8ex5laFVSB2+/HfudTLO5/O/ouPbhvUzT2G0+SMq4n3vEVFEW0Yu3afURI6Zw5cZ7QwdF402uofLCI6kdLsLmLCbs/gpDu4dy0q4bHfhhKrnkNsR+nYO47iKoyK22jh/PI4I8593pnQna3YFmPe2l18CZsFHOBRQzgVdbM2s4Xb8/4B7TPPwAJdLrfloDYPw9eL6VJ/7M6IYRyyXyeAvSVJKnz/yhyCki7ZFb6Clj7z7isfzshAFcDp4QQ1QBCiOpLN0cF5gB9f8/GKjnBET6kDddiIJRjTGMAr1PAJlxqDS0YzTE+IZmByHgxEo2bGgrFDlIZQhHb6dqpJ21GWgj4fWx7VmHvt0UYCMVAKN2ftzJ2mgWVANG0oV7kkqj2xR9VStnqZripIfJARw7ePB3dh4M4ceogvm8EDVsrcBQY+fpPpxk+diiLZy6n+e0PsDlXYc3d5chPhbCm75Mk7x3J7iHT6NHQluyOR2hccITO8QZy5n6Fv20vFh8oYXibcETmEdJe6UHSrJZIFjut5Wr8NVWoqkpUcjOkC8cY0TqMvF27iG3blqzZn9O1mRnHmRMIv59hYQqZixfR/5FH2PfGq9w8MBlTTR6xF/fyp6t7cvjrr+h4ww0U7N1LuNeBVJBNRPPmZG3aSOpDLzBv+WGuHNGdDidX0a6xhHy3Qq/ZX3D6hntIGDCIgMdD1KJ51H31NSHt2xDapjV5zgCqAK/JgqVvX3qNGcqWGj9XxhtYW+Wj/IHHCbn1Ftz3PMDQDilMfeA1rplwJYWpbVjT+yrmrniH5ypMJOlVnqvYzduPTOHZ527g9Ss9JK96kI8iGll7+0PsXHeBddIEbr/jMyydRvJq+jN01Dl4bO8THN66C9oMh4zVSC2HgN4Mig9UBVGTD6ZQMIWBrRKMoaDKkNARqrOh1RCoK4LIFHDUYGrZD+25DdD7VsjZCVGp4HeB3gTFx8iNG8u7N7/G7bYsHjv0GK+feZEVNZ8wfNWf+CQkkzu23cbwccPR+B10CytDE5FIwuGvKSzV8eLHx2jVrT15xdUEolqQZ0qnb2wt+ybX0DzVyqHJMRQPSKN+/Tp6X9xHq+7TGDHtKpbGdyTp+nGcO3kRCeg7rBcfXL2H2BM38vlLs+k9uCfFq9ZjLatk6FWDWDp3FSPGD2fR0Rr0oeEUHXey4/5Yds9Zzc2H17HphfcILx/CsucqSXhrKAcPVNF/eB/OHjtHh27t8Lq9pE7vgvk5A2dK23KhujWFcw9T9WohPo8Toz6Edq26UMJe0sQols/bQH1NPX0fNDFyqkTfgQO4OGI+w9c8hbd3NaXsZiBvcpip3DIrhTe+eOn3VA+/GcHvIfzmGULtnwevl9Lsv1avEKIR2AOM+R/n7X82K13yq+olSYr9va/rP4EQbuMvzEWSJCX9Rd4NwK9/2uz/E83oRz9eJJPv0BNKCkM5zHt0dt7Lruaf4VrkwpAbS8bd6xBOlbPfLKNlYCyFYiupYghaDMT2tzHg2gq89flYQsyUFJTRUCCoy1cI4AZbJEfm2Mn4Qeabtjp8Xj89nrTjdNspWhfFh88dQxk4jpXLT5L5VCjWxUUUvpzDyvsd9Lgxjt6zTnDn030omPcV113RhcTD61GtgrCkJE4+toRm6T3Y/dRU2lw5lotLFzJ+YEscORdI6DuA4moHuvZd8LvdNH5fRcUDeTSeLkfS6XDW1QHg8qsUKmFEtGyFs7KKlN698eRnM35AS3JWL6f9+HEcmDaN9IGDuLh+PRGpKZx/6kNWPDeb+LE38v2KA6SPu5687dsJT06m0xv3kDbzbXwOJ+HNmlFxbB/te3Zk86ZDhMXGkLRiNo0BgeTzo9NAac+RXHAaiIqJwmFzXl4zV+xRCdNLFOaXYR88jJr0tpi1EiNi9Wyu9jEhXsuOBWvRtWrFjWG7GdyrGQajgaO33MOU+EY67p7EDLGdx0vnMvLi67z/+ZMML55KwBLHCs81vH3tQ0ye8iQrr76X3F43MrhHAiF1Z8nUtmDV0r18J0/k6Sk7cbQeD1o9ktfG/myZoiJrUInXFwESqAoEPGCOAo8NZC/oDOB1gNcGrjoIiYOz6yClJ1zYEiQDdwP43cHfhCbQunEPr0zqxeMZ99O2eSsMFWeIx4NkiWLUsalEx6fCobnQehicXUd22FAmfGHnor4vFWVWhk8az8jnr2RdwjU82eljikISMeq1VGc28N0LOmzbXGy4s4RxwyJR7RfpWn4R6+tv0mfscPZsOcDwsYNZ8PUS2rXoTpftK3jrT6EoPg/VZdX0GdKLjcu28ujdvZnScj1jhkYwbqETj9+Oz+snKjaKwxt306ZTKxa8uh/HxUh2vO3jxykNaLU6tDodOotKixtsHHo9gjkjbKgCBBKWKVo65wzHbi5CxsPpDTV829uEJqMfuzbs4dbJ11MZspsWg42EXX2CCCmNnOJI3u51ko6++znEO7TgSg5+EuDRm5791S/6/dPxO/oQJEmKkyQp8tL/ZuAKIOt/lEmULn2qT5KkvgR1d93vfFX/XkKQJMkCjAZW/8XpjyRJypQk6SwwAnj692yzmlMc5UM6cCtWzuCmhmb0IytkGe3uHYP72kL0e6OpPJZB1NyeZD6/AWWFnoo/FXLm+dU4ZzgpnXuKirvzOPXSYhKT43G73Ky4x8HKe2zUvVlFzqcutr/p4uIOO7Fx8dSGHCPUmkbu/P0Y5Eju2m4gNcxPx9KD9A9zUXP+PKbmLdDUlNL8XAYmayyuRQtpNXIUhT/MoeO4ayjat5/Uvn2xlZUR3iwZSaNBBPwYw8Px1NYhFIXw2gLSnMX4auuRJAlXhRWhCryNjUgaDZ76YERGgU3lvLkl1bUOFDmAoypo33VWVWGKiMBnt6PV67HEROOsria5Z09Mz97FzWVHaVzwJTcObEHZzm2Et+/E3menUxKSQE37YVRlniW8eTobX1+A+bFHkSQJW0onGjetods3H3LioSdJMGooksLJ8EcRo/XRRVTjys3DWVCEf9lSUvZuY/8n32D5+nMK3QoROon9dQFMGkg8eYjzX83i+szd7DxUyk2jUjhx4DR9rxrM+3VRLBs+nQ36TjwaeS+Hkh7mlae+IKPlY9z0Tg77L3iY8UwH7qh/nxFKDUc/+YZbRyViqj3Pu3VbKZz1DQN6pvLVjXbCqo+yOCuJtQfreW1bJLN+OAYRzcBrDyp8jy1IABAc8bsbgvn5+yGxE1RkQmhskES0WvA6wRwJtXkQngCehqC/ISqVccYdSK0Gwdk10H40FB6C5r2hsTQ40xAqSBrQW9D6nRilAONb17L8ljLGWdfzevGn3Fj0AxuP/4kO1uMgSXQIsXJLwEZ3cwUmnURjYQ3f9pcJPVBAM7WOO0rn8v3dAV7oXciDgwJEhJu4Za6BKwal8XDzQ1x5dV+2rdlB/+F92Lz5FJ7QNB7uV43G3MiUt6PJOptNv24J1FdbSUiL4o5tggH3R3HxdDYt2qZxdN9xuoyJpftkN72fc9HrPgN9HtLTLfECHaKz2DfNR+6iBMrFQbQYce09TDu8rJ+zH7PFTP8HwqklizSuwEYxkbQi7qazXDmxJ1nGBaQwGBvFdH65gHdnvoZer/s9VcRvwt85Q/hbSAJ2X9J5xwn6EDZKkvSwJEkPXypzE3BOkqQzwJfArZf2Zfp9r+ufUOe/HL179xYnTpz4TWV9wk6m+i35bCGVITSQi4VYvDSiw4KTCmLpyMEW84lq0RIlEMBZWUmznr1oKC5CkiQUnw+dxYKrtpbqDiPA56HQLlAVhfaVJ2nZvQMXdh/A3mM0esVPcsE+Wo0bxYXFG4ideTcpVzdyoct20voMIHfHDtpeeRUXdu7BNfQmYrMOEGYAQ2gojSUlJHbtSumRI7QYMZLCXTtpMXIkhbt303LECEoOHya+UycaCgowx8SgBmRctVZi27aj4uQJWo+6grxdO+l2222cW7mSTjfeSOby5aQPG8G5fYdp1bkNtpISjOHhiPgkzncdQY+K8zTu2U7zQYMo2LWLVqNGkbdjB61GjaJg1y4iBo9mfa6PUXEeTK56Tkx6mwE//sDKYzWMG9oO58ZFmJ9+m027s0iSXXSNFnhO7qXFNddRtWkNhR8vRg2J5MLjzzN+cBu8x/dxPqEnRpMRs9lIWGQY+RcLSUiOp/aZlwk1GRDvT6H5jeM5+8UskpsnoSgq1iornXt14mJGFoktUnDe9xBRxw/RcPosTz7dj7a7P2K+ewLrV+5lxLihjLYcY2C3OHDW4tWGc/N0D936duadlhtoDGuPXnEQqjRCXBtw1nDX8jhkSyjvDighRmtne1U6DV4tk9rngUYLnkZI7AiFRyC2ZfBcQwmk9YPcPZDaHdyNYK+EtL6Qtx/aDoO8A5DSDRrLQGsAgwVsFZDQHsoyIL0fFB2B9AGX/vaFsjMQ2wps5WAMC66KctQEZS0/A21HBNvsej2c3wTtrwz+TesLJcchtg3CWYukN4IpPGjuim8DlecgrS9q/gFOm0fRy7MTWg2m6ORhDovB3Bx3jA+ze1Ex/jY+K30HfUQilGZgTRpOVNluDiWNJmd0Hqktk4guu5LH+85i2DUDObrrNPdviiWhvYkG8kigNzZy0apG9FIoZYc0iLoY4q7NJowULgzdS0h0LNHfp2Lb25Lwa08STjoKHnzYiaItDUoutTfVEv9ZCiHpsfhoJJx0KjnCeM0iTL8ee/KrkCTppBCi99+rZ/4SXUI1Ym13w28q2/qg7x9u71+F/wST0b8UdWcK2Nd7BmGF6Rzrs5jABonKJRfxzldxUU0ivcjP2U6PxyZScvQoaYMG4Xe7CUmMxyPV0nxUP6y5uSR26UrA5aKjt4hmxcfp6cujuzuH/TTH1WAjMSaUlIxN9NDVodebKdl2iLj2Hdn+/Enyb6wlNCaBov37ad6vHznbthI/dBTHMwohKQ3Z78drsxGWmEjNhQvEtm1H2dEjRLduTVVGBuHJydjLy9Hq9ejNZvwuF5EtWlFXWYOlTUdqc7KxxMTSUFpChaUZhU4tQlXxNDSi0emwFReSEBtGXW4uUS1b4aiqQp/ckuwL1eSEtMRpiaaxuJiIlBTKj58grm1bSg8fJqxDVzYWyMSkJXPw6S+wxSQxbNEHNOzZzoB+7Vm1N4fEvgORZ35IouKmWbgecWQbJTM2sPHqSXhCYuj+3Qe0mHQlkVER5Du17CUNoapoJAlr644oic3w+Xy07tCC6rvvpcuGxdQVlhKZfQ6/P0DX3p24cCaL0c9MYs+ZfPoM6011UTnNli+gYe8+okYM5WPDcNydrmDvlbfQcVAvzh47hxqayIajNjaWt2DL8Qb6DOnJzg17+UHczXXvlXLONBR8DhRLHFXlVtq+/AzZt9xPs85diNQ4qHTq8DfWBm0AgqDJyNMIYbFQVxhU7AYLlJ2GhHZQcY4PDqewuKAVFB+D5j0hZw+k9YbysxASC7I/OHsIjQNrHsSkB/OimkNNNoTGg/NSm8aQoLkpOg3sVRCVEmzXHBF0cGt04LMHZxReW5BsbOXBuusKkaJTwVULEYlBnwgEneL1xWgimtFLPQJxraDkGOltW3JbwnF8lkSKyuwUekNpiGwTlC29D7GVuxHJXRliO0AHSxgj9rZEKmjLxB/SaPtUDmn9DYRFhtAgF2MgDAUXATwIjUCSNMQNqid1sOCb7gFKFqcTuyuGbqvGIyIa6HRtKAJBNO2oJ49UhlHOIRLoidrVja4kHC8NmIimniwS6YMey79cj0gSaHXSb0p/JPyfIwS9yYReE0rBbSdA0SBrPTRutnJguRe8Bqrrz+C8R+bs0mWk9OpF1vr1WKKjcTVWEvN1PPrWwb1TJI2EpNGgNZlwVFcTF2YkSqcwsu4QOq8TU0QEqqIg+32g0eB3uzGYjfTxZKGrLUOj0RAaH09dbi5JXbvSuHcrd7cKIDIPY46IRPH7kX0+9BYLss+L3mJBbwlB9vsJS0qioaiIiObNqT53Dr3Fgq2yklyi0UTF4bPbMUVF4qqpIUHnJ8RWiSrL+J1O9GYzLqsVU2QkfqcTZ2Qy+URztDxAdGUhMbsW42vVk8xqH8Xp/dlj7sSpyK6cjeuF5Gygp7aGPjXHSDi3nxifk8LsAsoG3MyeY3mktmrO3iqJ+sR2oNVR7lAQqkrP796n2ZKvOWVpyyl9S3YZOhIeGUbALxPwBzCajIRGhlIzZBT6G/+ERqNBCJBUFX9CEo64BKpKq4mKiWD7hj106dWJ9Ykdafn+O2QcPoMl1EJddR2yrOBssBMIwAtLFDReGbsMGq2Gbw9r+O6wjvUn/Sw6E875UxdJa53KqmX7SO/Qhs/mnwRTBG5bPa+v19DqyDoMzz3JsXwNGZVG7unr5/q0ouAIW6cHxc+xYg15ziiEUFkXM4qD4X34YKcZpz9oYO4YXkPrOCWolGtyoVlnKD4OSR3BmhtU5ooflADoTEHfhM4YdFYHPBCREFT24c2CTmu9KUgQshfM0UHFb44Ed13QhOVzBevwuX4qawoPEoDOFGynoTRYvzUXIlPBUQ2hMVx6qMEQFvSFmMKorvdjUdwsq32H+PLDkNCeynOnee90F95Y6UYyhDFopQ359AGeuP15albruKKwnEff9JJw3M3s3n4qdodRcjSAKgLoMKInhKp8GyZZR4dImbgEGY1OQtZ6CODGSQUmIilhF3GiCxcbtxJNW2q0GSS82IHDR3yoqoofBxq0eKjDj/Ovve7/PEi/q8noPwb/5wjBGB5OVHoatZU1lHcZSmNrK9FtOnAss5jixy2cbLOesN6dSDmaRrMHO+JzOglLSqLq+Hka7mogd/oezFFRuOsbCLhcaA0G1EAAIUCoKgLwOZ1AkDBsJSUYQkIwWCxc88k0etw1kcbi4uCoWK9HkRWGv/0u13/zDZWnThLbrh31hQUYw8Pxu1wYQkLw2myExCdQl5dLWEIC1qxs9BYLqiwT8HiISE3FUVxIJ30jPn9wx1VjaCh+l4tQnYpkr0NVVS4GwskMb0/A48FgsYAkca5WpjymHXF5R+kdC1qPgzRbPobQMM7k1xKfEEXq+e2Y4+Kp8kik6NyIxnriNq3ClnUeW+fhZGYWEJ8Uh8floUY2UBSSDgJKiysp73QFu05XEZ1xGEuIhYqyGvw6E9Gqg5j64KZnqqoiFBXds09iWvQdXo+PhrpGImMiONV/NNFTP6Awr5i4hFj8Xj8R0eH4Hryf5DVLKC0sI6VFM7LP5dK8RSpFPywh9euPsGbnkfTtDKxnzpGYnEDehQJadmhB5qkLtOnUioKcItJbN6e2po6EZvE0NjrZX5vK8l1VzLxL4pbow4RFhLDzvMyRfIWZJ2K5dWEUWTV6smu0IGDaTi1v7Yji3d0xfBJ6LXPSHqLCG4q9vBCimnNtUi59m3lA0gIgjXqO/P7vI8rPBU1ADSVB5ex3B2cAnsag76G2IDiDsOYHFbskBQkiPAkay4PK3V0ffKANIUECkHRBf4aqBLcE0ep/IhoImq5M4cHZRXhicHbidwXbteYHSauxDCxRwba0elqEOfn8T15CXcXBmUl1Fs/sbcexIhjToi44C5HAbC/i87tCeTL6BGE2LV12y3S7kMdzXR3U7VGpz3Ry5exq4oq8mIv8fDdMJfsHDZNftxHfvx4TkdQrFwglERslmIlDRSZvhYUZPTxoHJE4/RXkPalnx9d5ZE5LoiIrl8YnHNjqipHx/itVyCVIlwaFfzv9kfB/jhDq8vPI/fFH1P5Xs3fneXTrW3P+o2VMGpqCdcn3WK6+m69XFeFenULRqkNUmJMoiWhFcXk9YW07UpubS2hcHO66OmSfD4RAazTis9vwuz1odDpc1dWoiowlOhp3QwNanQ4BLL3tNi5u3EBYYiKNJSXIXi+18W15ePKnbHvnXcKSkqi5cIHolq2wlZVhjozEVVtLaEICHa+7jpC4OHwOB4eNbSjpPJq1L82nKK0Pp9UEfHY7lfe8wPqh9+KX9ARUKUg6Wi1+jwdJkgi3V5Ei7AhVRVEUkCSM+WcYHVpLeGMpEQ0lyKGR/GiLpGWUjt6O8ygNtRjCQmmRu4eKxC5UN/q4kNSHQ3U6LnS+joy8WmLio/F5/TTU24iIDCcQCFBZWkmLWDOFjQpOUxTHze3QGvQ01jcSHhFGqqeC2PJMdDodHrcPh82J3qBD9vrw+/zY6m1ExUZS8+RTtFz9AzUVVnQGHTq9jqwzObTv3JoD63cxbOwQ9m87xODRAzmw/RB9BvfkxMEMOnRrx5ljmXTo3pYTB0/TZ2hP9v94iKFXDWL3pn0MHzOYvVsO0LZzG7LP5qDValmZE8+cbTYy5Q5o6/NJSQwnVlPPw71qGZDmQ6fXs+qkwsJjGj49HENlpY2UMB8DO5jQPvYg3RZP5eOxDTSL0oHDCmGJQf+A7AVTOGL5Y7z3xjxeONSR0tx8iG4eVNCmcHDVB5VyhzFUqbH8cFwTDGkNiQ3WoTUGZxM+Bw3aBHaeqkcICSQRJAGNFtXnRUVC9nmCJiQhQPYBmiCRhMQEycNjD5q3HNXBmQYCvI1gCAVH1U/RU6awS+ap1CBJWaJ5cUgdjbUNNG8WDmoAGst4/0QrFh5VuH1FEouTophRkcBN3+nxPZ9E31ehzUQbkXXQ/FQdUUet6PV6ogcqnBlpxhbiINIRzsA5Z+lwLhpTZRUgoXr1rHs/h+F3taM27CixF3vRuPQHbhrahjWfHabk3Y7kfPcj1e/1AHv4v1yPBJ3Kv0+U0X8S/mDi/uNIHdyXtgveZMe+czw4KR3fXRdJvfYqzm3YSHyvPti3r6FnjIr783xcp204kjtwNt/KiajuXPRHoDeZMMSE4tPWB2cDLhc6kwnZ60MN+DGGhOD3eBCqiiRJaDQabOXl6IwmVEXBVVODEAJ9SAg+h4O4unyuHdaOm+fMxlNfT2RqKtUXzhORnIyzpgZDaCju2lrctVYkrRaf3U5oVASBwlwCy1fgCG9GqdVJoz4C/4HD+L/8ktPNBpDhCUWj1SJJEj6nM/hFJGcDkaoLjU6Hp64Ob3Qyp6Rm5BubYTNE4KyqQopJwil05NbJREeFYnf5yTKno1pCqJn0BOdaj6Ck3ktis3jy613Ed2iD0+7EaXcQnxSHy+nG5XQzWs4iLVCNvcGO0WTEYDJQW1UXXNQlQYapFduktpjMRuRAgIA/gMFoxO1wARLV3fthaNYMU0MdzgtZ6A16CrOLiImPRpYVArJMQrM4juw6Rofu7di9eR+9BvVg77aD9B3Si8O7j9F7UE+O7D5B3yE92bftIL0Gdmfvlv2069yGk4cyiE2IASHw+wNExkRQlFuCRivx3VEd4xamImtNHDpvQ1El4o0uDEYDzw+08tSAOjYXROP1+BiS5qJv8wA7b8vDXV7M+wcSKPXHIN30OefrLMi60KAS9rvAEsnsa0o4ctHJjIsdoDoXwhOpr22gxh8C7gY2HHfy7JYEjuX4qFOjWXTYx2tbQijwxYG9GgSsz4nktQ16yr3hQeWu0YJGg8Ph4f3dkZwsVoIPu1YXjGgyhwfJRVWCROG0Bs8hwFkTNDv5PSAEroCWJ5fDucYoHPX1wVmJNR/C4iHgpnNYNX06RfPkSiMNjR7QGrirl5vbW5eS0MbAsGNe/tS8mLvPafE11xF+3MeVXxRwpi6Sg2PCyLnOhMFooN/JMq6cbiX1WAla1cDee5IJO1fJoPkuamyFhOhiGDtTJf5oJvJiLfWdztJ13jgaty9kzMDWbNp5FtPom1i0ZBfnTl381ysSiaYZwn8DqjhJ4IqN3DouiZKPl5LzXBoL9jWQ2/FqdnkTSP8oiQ4DQtntisapaOimsdIpdxtjUlRCzu5GZzYT/3Q6sZujCYmLxWu34/MFUIVAKCqy349Gq8XncCCEwBQRgd/pRKgKSGCKjMRVXY3eaESSJCQEno0L2frKayBJWEvKcLYfyLlyB1Vx7Ylr2w6/Avu27CMsIRFLXBxdG89R7VJJunic1qXHia4vxNqsE97yMvo7MxlOES2sweUbdo0Fa8CAJElki1gK9AkgSXjtdkwWC6oQ5NYF8Ca0wud04mtsICFExzklmkw1lnS9m2KXhiP9bsXt9OGpryc0NITSgnKajRhC6Y13oKqC6Lho6mrqgxt4KCqn4nqxxxZBaHgokkZCqOBwOAmNCA3+7/Sg6IzIAQWhCoQq8Pv8OB0uouOjqUhvi75Na0xmEyX5paS3aY61ug6DUY+iyNTX1BMeGYZWq6W2uo7mLVI4feQsnXt25Ni+E/Qc0I0je47RvX9Xju47SYeu7Thz/BxJqYk47A5kWSEiJoI6awMBf4CQsBCqyqtJb53GxYvlyBoTRrOJ0qIqblzZhs93afB7fTy+LopnNkYiB2S0Wi2f79SwN9+A1hzGS4Or8fkUHl4ZwR0PzOOBeV425ITjCGipc2vAWYeu5wTmz3+M57qeg+jm7Dph5dntKdicftxuL2f37ue9gVl8dYeO06FX0TmykW7pBtwuN/icEBbLze1qmH9TDSnxRhSvi+xaPTm2MMJDdbw60kafBDvuAOTU6lG9LpyEUGHXgMPKycYkFp3Qkl3qZm1BEs+stfDjRYFLhIDPwYxj0Zyr0PDMaiMPbGpJfWUZK0rbUlJiRZUDqKEJ3NKyiLgQBY2QcWrCSNVW4ZbCuW2KTFhfDYn1dbTK0rJjokr5XBtGn8QHOy34ZYGjUqX7pADvbtHxyKI2yAtLCa+VUA0W7vnCyUtHevBZ53qOfabBU6+ytzoC3VqJHnu96Cao9Dh3LduOFDCySwKebct58Mbe9BrY/d+iS5p8CP8FaCb6Uz/9an7YUEnbJeNp+XoFIbExqDo9NdYGQru1xuGxU+eSKWg3itV5MgaDgVjcWCQFVZap/jCfnM4nMUdG0SjMbNZ2QjKZkQxatG00GEND8TQ2Iul0QUedRouzujo4Ytdq0ej1OCor0ZpMCFWlISyJBUUGbJZY6hPbc7BSxZrcjXP+MKKuuh5tQgpyfR1J3bujNRjw2u2IqAS6dmmNzlpCUWgLJJ2eMGshUZIPRavnohzNcUsHivXxlIgwzpnSUXw+/Gg5bmnPRRHLBUsLdDodDpuTKOFGYzSRa5OQNVoMBj0lHj05pubo9Xpc+w8SOvtrvI12HHYnsYkxVK1cQ9L8GZhMBmqr6zBbjKiKitlipqKqEb1eh0arQaPRUGetRyNpkCQJvUGL0+7CEmLG6/Gi0WrQG/X4PD4URSU8PATtay8Tvm8zYX4bWp0WCTCajGRl5pKUkojb5aGx3kZ8szgaahsvkVIUWWdzaN2xFScOnqZL706cOpRBq3YtKMwtIiwiFK1OR01lLfFJcTgaHLgcLhKS48i7kI9er0dv1IMA2S8T8PmRZZkeQ/rTpntnvB4fdQELNS4dXo8PS6gZh81BerQASaLOrWPfOScCgbWqDqNRT9+oMh5en8TbOyKCZppTS2lz5gNiYiKhoZRsTwIel5sWIXbsSgjXt6ogPcmCNORRrojIpFuyYEI3P51Dq4OO4zbDMI9+nA7xAjQ6pIAbb0AipMsopLYjkISK7PPjUEL58HR7UAK8tyuC21c0Q/icLMwIZdbJGO5doONAgZ5ydwjzD2iC5KE1kFnko3e6hEb2Miq5ihf3t2PaRgcPbW3JG3uTGfGphnJPKJ9cXYNfF8qdc1Q+2BfDqgvh9N/qpPnhUj7eGknHdXZmDKlnXIsathXFUFnnZ9C8Rq454SBluI82dwhie4Zz/4oo8kJlGosVvI06GlxgMpjZ9lUe9lMJOCSFc24T0r5Qih7OYPdHCgkJ0WiPbsHYcwgzV5/kx7W7/uV6RJJAq5d+U/oj4f8cIRzadYwln22hdZe2LPm0lm33hWMwGqiusBITG8OaB2T8u4oxmgw4bC48vgC06YqttBSEiikyksbicjLrm+OX9JhtVQx1ZaBDRd/SSMzizlwwp6IICcXjAaESEh2FLCSynAaOmdtTEdOWgMGCq6YmuADM7yAlTMNBJZnTzhC6RKl0LNhBhLOGFV98iz83Ey2C7zdmIAQYjQbGJnqxG8LxqhJ9zI1UewQnQ9uTF9OJMyKBFNlKgy4UVVVJdZbQyVtEB3s2GkWm0RjG0IPJuDQq5hAzSLDPHcWFdmMoMyZgtXkwGPVodFpcDhdanRatToetwY45xIyiKFRX1NBvWB8ef/FeHHYXEZHhKLKKzqCnvrYBrU6LJcwCAhw2J4osY3p/KmpYBCaLiWenPE5wDYz4aV9HCTzuoINQr9cRl3+MvqYGVFWlqryGlLRmQf9CgwOT2Yjb5cHn9RGbEIO1uhatVktMfDQF2UW079yWc6cu0qZjK4rzSwgNC8VsNlNTYSU2PgY5EMDldKPT6/C4vLicbpLTkrBWWlFVlbDIUKxVdeh0OlJbpaDVaoNmAiSEKpAkCVVVAYgxuPDLgoAxAlQFe6ODHv27Ep+cwIvb4skvdXDNoARI7Rl0JrsagquZo9Npa6qkvE7lxV0pJOjq6NRMC4MeRJxZjafkPGWeoLN5Z66ek1E3Bv0N618OOpv9PjQSdEvyYcpaT8GOlQhJ4t0dIbyzN45WXTtxoNiMw+FlYGsNSBI9IypJjLUgVIHe38jLo1xM6u9m4RGBrGpYcGsDHw4rYOtDdtrH+rivTR6TRxmRvA7GpFTStaWZ6QdCWHkhihhRg8mgYU95LJ4AaHGwbmI0GdpY7F6osim8uCkCnywINapo7CpV2RJLx8FAQz0De/rR6fUQVUN0YhhDXoXqyhqaNU8k4PfTulUh924ycqRI5eSkUMwtUzm1oh6h0XC+1RVsKJDpN6o/I68Z+q9XJE0mo/8OdO/bldveGEyvd4vQumIIeDQ01jUSFROJUAUNHpmd+vaEhIVQXVFDVEwEJYEQjoZ0otGrgsGMq74eW0waAQRuWz3F5hRKlRDKi7RcfLieHE8YR+L6U+aSEJKG8JQU0iY9xxkSaBRGLihRZCQPIn9ob+pSNVw0pmG2VdFvWG8enXQNkaWZmCKi6K0U02VAIdpIE15LJFG1BUSPu4X8Zr3ZmmVj97bDuCObgdHME1Me44oPJfwdEqn2aTllaguKQo02kqP6VhQZk1ACAZp7K+mgllB3Wyauei96gw6NpMHvl2nVpR0Tbx2G7AvgdLgxGg1IGg0OmxOdXofeoKPeWo9WpyMiKpwju4/xyetfERJqCZo0gIbaBjQaidDwELxuL6qq4vV4MJqM6NasQKPVUlFaxXdfLcLt9KDT6wjIAfx+P1qNhobaBmRFITQ8hB99KZwJa4/X40WSJNwuDzFxUdRU1mC2mAn4ZTwuT3B/pphIbA02hBDEJsSQl1VAq/YtKMwrJjouGp1eR0NtAxHRYYDA4/Li9XiJiAynsqyayKgI5ICMqgrcLg8Go5GGugZCwkPYtGwrG5duRaPR4PcHkGU5SCRuLyazkVvmm/nkVEuSInVsnmQn4Avg93iZPjqPUZ00dE/TkDz4Op7dEMFji2TcmlBkcyxlg97ji4xWRMdFEY8VWeg4aE3Cl30IyjModkfw3bkkZL+PLUWxnN17AA7PDxKo1gBKMKJsaYaZZ9ZH8My6cBZmhHFFazePd8vHnLuFb09YyCxVyKwxM/N4BHd2a6BfYiMh4SHsydPy5kYdyy5Ek1ljYspWHUKjxYMJxVXPh/uimHayOX0iS1lzr43B7Q30TWgADXy7P8BNi+IJ6CLwenyUNGi4ZnYoYxfbmNzazjObY7nrBzNTxroZ36qWLskCrRqg3i6j0WronV1Ez3I7MdEWRs0qoFWOlzYtXWg0GlwON20SjRROOsTRG+yoqoJX9VNkiqX3ndH0fs6BXyMRlxTH0T0n2LFh779Bk0hI2t+W/kj416/5/jejILuQfRuOk5AZT8Dvo9NdAbJXWVA9ArfHg9vlJaFZPOUVpUxYqkfkNCfa0Ycfpi/hbLP+ZPsV6qOjsZgEvoltiO9lQHOvnvMiGkW10PVcEaoagR8jx83tqBM2sIejnihEq9XidLgICbVwy+Tb8A5Yx6klodSug87tk4jcPJsllo6oyYOw1zfQyVtAjKUlPY+lsq1fLZ10xWxctpVYZyUNIo50rQ2HLpQLVi0HnviIsGgLkiojKwJFawQkFFVBjdCSp2lJtM1BdMBDkt/HPm9rZK3KgGF9UFx29m3czY51uxirL6IzoZz1xiNUFaPZhCLLOGzBUXloeCgOuxMJiIiOxGFzBEMPzSY8bi9mixmNRsLlcGM0GXHYncFoJrMJNSsLyaDnqTcnM/OD+SiKgiXUjKKo+L0BzKEWnHYnQlVRFRXFHEpto4eIqAjcTjcIQWhkGI5GJ2VF5aSkJ1NdUYMgaE6yhAZNUHq9nqSUBEoKykhIjMMfCODz+DCHmJCQ8Li9OB0ukpITKCksQyNpCI8Kw2l34fX4CIsIxWl3ojcYUJWgg9bldGEJseDz+VFVgV6vw+vxIgT4FQlSeuMzB6ivCaDRaji05zjr/Dq+PSwxaZCP1V9+zdGLWiwhFko6PMziL+ZyesmH1FTX89q053Ft+4yPDyhsy/KywnyK+MTmtNdU8Nrk8bz1YR157liOHaii953vkprxGRqvnw1nTVzTJ4z5GXp0Rj0Ndph1PIop79xKkm09j4WVoBEy134XR/9kB81iDORadaw9pWIIFUSEGll1WxE6nY75Z+JYdNzM3P1eqnzhHCxJpL7eiQDeO5xOp6hGYswy6fFBMtUZjNzWx8X1bfJ5dWcS+3K9CFXDrrwo6lwahqW7+b4SCuu1vL8tBqschpYa2kS6sISEcf28CKKSw/EGXNz4RTOm5FWTrjPg9/kRQjBuQRyBwi5se9xHUot45gyxYjILIhKMhLcwEwj4CMgyrdq3oFuff8pO0P87Ls0Q/tvwf27rioqSSp6Z+ArWqjokncLt63Vse0JDTY4ft9NNfFIc1RVWVEWh65gE6nKgc/cu7Fi/h7iEGKxVdZhDTNy2SaJoq5E9nzQwzJfLqaiuyG4PQ0PqiLh5EtsPLiN9kJHsbV7k2jBkOeiEDPhletxlZMhLWr7qXY/q1jNw1AAI+Ll45CT1PlBkBUmjITIqDJfTw4Mv3IW1soFTh85gy79A78azZIR0wm6Jxe32oigKOp0Ok8WE3+MDSUIVKnqdjrBmGq6a7mXF9Vr61J8mN6E7XnS4vDKSpEHSSIzUlCAaathh7MSVrtPURqVxVkrGHwig02kxmoz4/QF8Xh9arRazJah4FUVBq9ViMhtRFAWNRkPAF8Dn82OymC6Ft6qYzSZUoaLVaXHYnMTERVNnrb/8W1VRMYWY8Xt9l9YZRBDw+xEC3C4PcYkx1FU3YLIY0Wg1WEIsVJZWotFqSWgWT211LSaLCaPJiBJQUFUVSSMF5fb5UVUVjUaDVqfF7wvgcriIbxaHtbIWv89PUvNE/F4/iqzgcrqJS4qltqoWs8WMoqqEhFporGtEr9ejM+jw+wJoNBp8Xi+yrGAyGfF6fTw+Lpq1x9w0uLX4/H5MZhNjr+zMtdoNrLwQSddUiW8OhRKd2pyCrEICgQBarYaQ0BC8Hi9yQOaL53vQ/5G3UY99j9jzFV6hpzxlMJmxt/Phw2+i02kZ2DuVxye0xHR+FSu9Y4lp34s9W/dz6tAZdDodiqwQGxPK1W3s9E208czmGNpG+7GpIThdfj6+spJJaxMwh5gZ29rOswNrCQgtj2xOpcJtoaaqFr1OS1iYCacrOCPSaCTMIRaUQHCELwdk0sPc/Km7zJAWXq6dH43BYgZVEJsQzeTHb+DtV+bgdnvQabUYzSaiTAHMISFUNQTwenykdIzA65Jx16p4XG7SmsdQWm7DaDKgN0s0720hY1MVGo2WxGbxWKvrMFmMGI0GFEVBVQQ6g46XP3yGEX+H2ej32LqiR7RO7L7qt4W7Ri1taNq64j8VgYCMz+tHVRSEX2LZdRoqz3twuzxEx0VTWVZNwB8I2qIPu7DXu/lx7S4iosJxe10MeEKHosqsn6gje3Y9KRoPOzWtQK/HJ+nY7klg65qdeBoFnmoDDz03CbcruA7A6/HRom0ajz39NHvekFA9RgIBhbiEKMpOnUJGQ1xiHBPuvxFZluk3vB9prZsz+8MFLJ+7hryLBbS9K4UWZ4dQrpix250YdBrMJiOBQACnzYlWp0Wn04IaJHpntcq2p+HmtRIXO3Wh59B+dO/QHKEKtDotGknDQUcYJ6RUtCYTB6P7cNwXjdfnCypAvQ6nw4XX7UWr1WA0GfB6PAT8ARBgMOoBCUmS8Li8BAIyBpMBjVaDJGnQG/T4fMHvEbscboQqcDuDfw1GAwF/cKdKrUbC4/ZgCjHh8wVj/mVZxmDQ47C5iIgOx3Xpd067g9iEWGRZprKsiqjYKLxuL26HG61Oe2lDUoEiKyiyAgJ0Oi0epwe3w01MfDQ1FTX4fX7iEmPxXiJVl9MV7GeHG71BTyAQwGgw4Pf6MV7yWWi1WhACg1FPl97BLeslKehXqE+5Arew4PF4MZuMxCfG4hQhPL8rnZtfeZmxrRqIMCmEhJpJaZGMVqvhs4Uf4HK5SW2RzKLZd9HXvQWpvghKTlLtD+OqOTHcltmLIyKUngO64ff5uSPpOKmVm4kOgQPbDjDvswVcOJ2NRqMhKTURgaD74D6cljvz+LooJI2WEl8UY+66BZszwKdHE9AZ9FhUB1e1bMAvdByvDKPU6uPuB8ej1+t59xoPPRMc+H3+S/1sBAGSVoPH5cHvC1BgM/H5oSiuXxCP1mAIPhNARUkFpl1vBz8wL8Bw6fms92hp9GlxuzyYLSaGvuuj7VU6AgEZncFAZbUzeP9dbmQv5OxxEJcQhyzLVJRWEhUbidftw+V0o9XqkCSCvhCj/l+tRoIzhP9Ck9H/OUJwOVzUWxvwen14vT4arA34vD6MJgPWyloUWSEyJmgXFQJ8Xj+WEDOKLKMNc9P2Gi1yQMHY6CalOh+DUWHibkFk86DTTlVUXHYXjjIt59e5mfna8uAI3qALhn5m5vDJfWvo3uxa0lqmgoDl364jxVPOyC4JBPwB9mzah1ajZevq7eReyKfP0F6Mu3UMQhUkM5DvR0uYzSb0Wi3d6k7j9fowmU3BmH5FJqqtgt6sw+3y4HJ4sEToiUiVMEcb2b1hN8ruVRj1GlRVQQ4E8IVE4Q2Pxe8N0OhR0Oh0JHUwAQKP2xs0HZkMGIyGYCSQHByBh4QF95CR5eA6AkVREEKg02nRSBIarQafJ7hvTsAfQJEVDCYDfn/gkmINfmdOulRWiOCq5YAvSBKKoqLRavC4PQQCAUJCLZfIJUgekdGRIMBaacVgNOD3+2mobcTn8eHzenHYHPi8Pnw+P/XWxuB9shixVtYiywqR0RH4/YHgVghePyaTCVVVcbncaDQa5ICCpAG/34+4RLAa7Z8JR6XngG5cd9tYAv4AJouJRTOX43K6uOne63n+g6cZOX4YyWkphMUlMnHi59RP3EKjGkZ5cSX2BjvN0pJx+4Izk8LcEt6bcZx1iW+yZFMu39UM446lsZjCI9CvXMauh5/l5MEMLBYj5XICztAW5Fm1DOloZtwtV+F2uTEYDbRsl4bJbGTbmh1kHD2LTq9DVQUuu4uV365FZzJxvjxo9rG6dDy1NZnvToXRN7GB1beX880nC9Hrdbzzo4XdOTqUOyZijo8NbuqoyAR8ARRFRRUqOp0OSSMFw6w9vmDocCCASatwujoUj8ePRisFv5SmCrj0lTEECCFYcVuAi2tEcHGnTovX68Pn9xMSFoIxzs89u7W4PS6ioiMBiZpKKwajHjkg01DbgNfjw+vx4rS7/tVqJPjM6jW/Kf2R8MeS9ndAx+7tefLNyeh02qApQatFc8mUgQSWUDON9TacDhcGgw6dTosQYGt04LUaWXC1H4PBQCAQ4GJEB7IbLex6WUtjWdBUIQBZUYKjX1lGo9Xy0fx3mPbte2i1wbrOnbzAxdNZRMZGojfokSSJiStWUCDF4Ha6sdscJCTHc8/jdyCEYPS1Izi08wih4SGsmL8BR6Mbj9uLwWQgL6oDAF63F5/PhzlCxxUfCnwuPzq9DrPZRMUpwded/VRnKghLGMfDO+P2BR2oOr0Og9tOr9rjRMh2TGYjA5/UkDjQi9frAwFGc3D7A4/bi6wEr7N7n8706N8NWZZRFYEsK9z/9F2EhocAEqoqkP0BhAgq/D+TQNB5r15eTyAhoagqgYByaRTvvTw6Nxh0+P0BTGYj9kYHqqqiKgpeb3CU2FjXiMliRNJIOOzOYF9q/xz9IwWjmCQpaM7SBk1GTrsLjU6D2WKmscGGvdEeVGySBJKEo9GJ0Ri0ZRuMhmDklE6H2+lBo9OgKgqqouJxe1k8awV7th5AVhTCwkO57rax+Lx+9m09yJuPvce3ny9k3eLN2GwOQkIt+FU9ny/6CHuDnY492tF49bW8UxK8P0+8MZnzp7P45J15zJn2LbOnLcDh8DD+5jFERoVh0uuCUVgeP2mmOmrjBzN5QyLf7fOxdM5q0lo1JzYhmv1bD6AEgmYsg15PwOdHVVRCwiz0GdoLj9uLqqgYzUa0Oi12h4+5h/Q8vSGKWSdj0WgkPB4vLo/M7d0dxLmqMYVY6NGvC6qiIstBstbr9ZcjrWRZBgnadGyF3+vH5dew9EwYiqJiMBovDxLEpX7W6rTBgAKtHq/bj96ox+/zYzIbcTQ6UGQFR5WKIvkQeg8Nl/pZqw2+p38eQPy5n/8c7fUvRdMM4b8HpYVlBC5FlEiXRnsmkxGdTovX7UMjaTAaDegNBsIjw3A6nJcefOXyKLhBNeJVNSiKQu1ZI37PpY90CBBCDS5KM5uQ/QHeffpjTh85eznMUlVVYhNjue3BP5GYkkBIiAWtVkvOuTxkWebKG0bhcXk4fuAUny/8gNj4aGpr6ukxoBst26VjMBnQ6rS8MPVp6mQdA0b2o0XbNPR6PZ4GhaXXadDpdSiKgtfjCypXY3Bk7nF78QSCYZ1ajYbk9GSU0AjORXXDa47E7/Pj/eA8Z+aDwWBAbwiOyHxePxISWo0Wc4iZvKxCjuw9DkK6ZM9VWfD1UuISY0lunogQAkUJvqhCXAotlaBF2+aEhIf+dF4K3jNFljFe8kUoikLAH0Cowf2h5EDwXFDpB3cbNRoNaDSaYH9ptJhMRoSqojfoGTiq32W/gSJf8ilc6ue01qm07dQar9uDRpIwmYyYLWbCo8Jw2B2XZiIhQf+KBHJARlGCW32YTEF/x59XW8sBGZ/Hh8FgwGl3sm3NTuSYWKrueZgbnroHoarYGmw01Dbi9fi4d+xkfF4vJouJCffegDM3n8CHH2C2mJgxdQ4Cgdfr476nJpLeJg2j0cDi2SuZ+PgdBAIyg0cPYPJzEzEnt+HzGbvQ6jS0aJPGjXdfS2lhGRUllTw82Ee/ZCcetzdIwnodGk3QzHNkz3HMZhMGY5Ao/D4/kiRhMBq4f7DEk4OcXN2q4VI/a9iYH4t3+14cZeUUZBchy8F+/rNZUlVVhAj6vJCCs71Lr0BwVnzpOwV9h/WmWXozhAhuEW8yG9EoMu1chci+wGUznBwI1u+wORGyhvkDVRRn0Pz453UfJouJkLAQIqIjUBWVQCBAVVn1v1aBXIKk1fym9EfCH0va3wEnDp5m4TfLLtvQFUW99KCq+Hx+dHoteoMej9tLbXUd1RVWrr39GmJio1BVFZ0+OErx+/x43J7goqlLpiJVUZAuxaojQKvVMHBkX7weH9OnzgGCI6tJz99Ds+aJfPv5QgaO6sdTbz9CeXEldz12G82aJ3Hfk3fxwgdPkZ2Zw7J5qzm08yiSJHHgx8M8/OL9ALTt1JpNK38EAYd2HuGKa4ej1WqRNBIBnx+f18+occOJjIlAI0mXHcJGc9Ax6/P68fsCwe2S0VDrl7jxnhuQJIl8Yws0Wt0lIvAhX/oilU6nRW/QEfD5g/4AJagAgvclaD6otzZcXv2rKApavfZypI5Wq+XY3lNBH8KlmYMEKOolW/+lMm6Xm4BfvkwAqggStkbS4PcFUFUFjzs4kwiLCEUOBFDUYD/6/QGK80oBLs1wBDrtT/1cXlTBhdMXgzb0UAtej4/qimqsVXVBgjAHt9kIiwjF5XTj9fpwO91BIpIkrrpxFC3apQXt6RKER0fQqWd7AgGZtFbNISYWf5t2bN55ElkJKkqNJNGuc2smv3Q/laXVvPzRs8FInd07CTidjL52BE+/8ygjxg5Bq9Uy/tarmL58Gqoq0Ggk1i3cyBXXDufA9sPM+mwRD851cyKrEafNyYT7/8SEe64nJj4akJi+z8ChYkNQ6Wo1+L3+nxz0Tk+QKC6trDcY9UGfC1DU+QnWRj7J8rMhaHUakpon0XfkIHy+AD36d6Oh3oaqKowaP4yo2ChUNaj+5YCMIitoJQ3ZmbmXnpPgs/PngdHRPcepKKq4PKgCULVaQuwVDB/ciRvuGk9EdPhl06ROr8NgNNBzQDc8bi86nRZLqJkBI/pe3ocrOGPTotNqadWh5T9bbfwS/6UzhP9zUUY1lVbuuXoytdW1TLjvBlZ9vz64Cdwlh1xpQTmqqjD06sFkHr+Aw+ZAq9UGo1WEilajQZYVjCYjYydcxY9rd+L3+TFbTMF4+UvbNAT/CgL+AHFJsVgra7n9oQnkns/nnidv54nbXkSr1XL1TaM5suc49gY7BpORPoN7UJRXQmVpFU6HC42k4eqbRnPz/f+PvbeOsuLM9r8/dVza3buhhYZu3N3d3R0SIBA0wUKchBAiSIITLLi7u3tjDQ3t7m7H6v2jDmeSuXPvZdbL3Lnzm7vXOgv6dJ2uqlNVz/Psvb/Sl9joeOo0rsWNi7f5YeFKBJm0kpMp5OjtdJQUlyJa67symTRRGQ1GEERUajWGCgnSJ31Ojoi0HUg0fJVaRUV5JSaTSSJfWeu9coUcuVxaEb5ZcSuUCuRyGSLSKl5AKrmIiFZeg0ESAJPLMZukrEplK8UosZgtIBOkMppFKssYDAYJ619ptG0rt5YaAJQqJaIoyVlLzU6Res3qEPcygZKi0j+UpwzIZAJqtRqDwWAlzCmQC9LxClJZm1lfTWXZguXIlQosZqkv8sfJb9j7g7h37QFPH0ajUCgQRZHmHZqQ+DpJWpWKoNJIsiAlRSUcvb+bXRsOsHPtXsIiQ+g5tButOjVlePuJVFZUSkQlQTqu/mN6cefKA3R6Dbcu30MmyBg/cyRuHq54+nkQGBLApRNXWP7FGoa+P5DD24/j7u2KXC4jKS4FkJBkPn5ezPpqGrEv4vll8ToJMltc+hdklUwu9Wms11IqjUnXTLqW0qQj/uE6ixYLZmt5Tq5Q4F/Fj/TkdMwmCUkmWrM6mUyQrgPSdTSZTNbrrLReQyUm62ekcql0nY0GI4JMhqnSgHegD2nJ6chlMtuk7uPvhYe3O7nZ+aQnST7gCKBSKa0TkYiAdJ0VCgX9R/dm3ndvb6z4LlBG9TxU4vXBb2dprFuV/n8oo/+tEfPsNRkpmVgsImcOXsBsMkupsGjBydVJWtUqFNy98oD8XMly0mg0WuugCkwmszTYiyLH9pzEaDTiG+iNX5CPBHs0mdHqNAx7bwCevh4gwNCJAxBkArvW76OosJjpw+ZaSxEmLhy/TE5mLk3bNcbTx53r52+TEp+KRquhUcsGiKLIyf1nyUzLZsVXa1n4/hfcOH8bpUrBzM8/oM/InlSWV1JUUGx74M0m6WE3GU3YO9qjVEqyEIJ10BeQUnqzSRpoBesiplnbRtZSjVTKkcvl0gpSFKmsqMRobcDK5DK8/DxxcHZEJpPkKBQqJS06NrHBO0XLmwKCFDLr4P8mTCYzwdWCbFwHk8ksIUdkMlQqCTUik8tspQcRqKw0IAjQpHUj9HZaFAoF9288svYXzLZyk1qjRhBkEutZRKqXy2S07NLMlg0ajUaunLpOQEgAJoORsIhgW2lLIZfgqdtX76KsrFzKTmQyFAo5D25ESWQ4s8Tybty6ARXllVgsIl/N/J79mw/z7frP8Q30oW23liTFpiJXyKleuxpjPhzBtE/eRyYXuHXpHgFV/UiITZZKW2YzXn6efLfgZ2aPWsDCSV9w6uAFFAo5u9btpbysjKTYFFKTMvDy9cTe0Q6zyUxqYjpzRi9g089b0eq1TJg1CgHw9vOidsNITCaTNMmJbxYpFmvWIJVMm7Vvgp2jvYRMQ7rOBoORQaO7o1ZJpaG05HTeyD2b30wkorTafzNAi4I145MJfygVYi2xCRiMEgzXaDTZyihylRKj0UTdJrUwmc22vkRGSibPH70kJT6F0MhgqlarIpUOTWbpOpvMmEwmvP286DO8O226Nv/HDRj/SQgykKnkb/X6V4p/aoYgCEICUAyYAZMoig0EQXABdgNBQAIwSBTF/P/q7/w9GUJBbiHD2o0nMy3L1oxSaVTSClEAQZBhNBpt2yuVCnoO7ca5IxcpKy4DQbAiLswo5HKMJmnQLSspQ62RoHcKpZLSklJCwqsS+zKegWN6k5udT9WwQLat3kPD5vWo1TCC1d9txNvXk8ZtG9KiY1Pys/NZ+fVa7B3tadiiLhNmj+bgtqN4eLvTtG0jzh25xMqv1jBh9mi2/bLrTVlewokLcty8XCnILcDL35OKskpSE9Po3L8DRfmFRD96aUNliCLo7XUSMgSkVR8iWq3Giq4SbQMn8JfyjkwgtEYwpcWlEt/AYKCkqNRa7hGRyaVyW9PWDbh46hpKpRKLaLHVnVt2aMrFE1dRKiWoYUTdcOJiEpHJZVQNCyQ/p4DgalV4+vA5BXlFUgait8Mt0B9HczkvnrxCqVQiihYsZmnS8vbzIjsjW1rp2jIHafB70/y3WDMYZ1cniVQnCLh7uZKRmmXzsAivGUq1mqGo1Gpinr4i4XWSRIZDQG+npaiwhHbdW5Ecn0JyfBpmkwmFQoLkOjjZU1RYjEwmo3GbhnTq1ZYl835CrVFTUlRC/1G9mfXVVDLTshjQbAQWUSS0RjDhNcM4f+ySFXorolSpGDC2N1tX7uBNU7xt91bcu/4AnV5Hk9YNSE5Ipefgrjy+/4zLp65RlC/1PRAlwERGaiaF+UW2jEdhLSO+udeljED2p+tqMpqkHos1KxQQOPF+MfE5MPOYCyAtIExGs+0zCqXClkkqlQrMFgsjJg/m2cNoHt6MspH3jEaTDR2m0aoJqR5MZmomGalZOFmhxHJricnT1wOtTsur56+lv2m2WGVNJPCDNFZJ96GhQoIyK5RyOvftwNerF73V8w/vJkOo76USb47yeqtt1d8n/1+G8HdEW1EU6/zhC5sHnBdFMRQ4b/35nUXU3SdkpWcDoFKrpPS2wmBtFoPFIuHWZYJgQwXdvHiHRq0a2OB2hkoJhmg2W1AqFbi6OyMI4O3vRd2mdaRJQaEg4XUSdRrXYt/mwzx/9JLflv/Ogu/nUFxUjJuX5FIVFBZI07YNmTN6IYtnf09JUQkjpwxh0U9z8fbz4tDvx7l37SGffrCY1Us2IAgCA8b04fOVC+gzogfl5RI5SiYXmDhnNO16tib2RTypiWkolAqe3H1KdFQMZaXlVK9djVoNI9Hb64isHyGdj1kq/9SoXY2qYUEYDUZbXfjNxCDIBBQKua1ckZ2ZS35eIWUl5RKJzlqCEQSphHDp9HXadGmBUqlgwOjejJo6BJkgcPHEVQmyac22Xj2LBREsJjMvn7wmIzWLa+duUZBXRK0GERIkFMh6Fk3Cq2RUKiWiKCKTya2ieQJd+rcHBCxmM4YKA0qlEq1eayspiBaRkPAqhNYIJj+vQBrEEHH3dMNsNiNYr/Pr6DhO7D3Lod+PER0Vg1IhEdBAxL+qHyqVkrSkdOJeJmKxWEl4RiMarYYxHw6naZtGIIrUql+DxXOW8fWvnxAY7E/nvh04uO0IT+8/w7+KLwt++Ihpi94n/mUCMc9e07JjMzr0aoMgCASF+NNnWHcWr/2MrgM7AiJhEVUpLiyhz4gefLxkJhVlFWz8aSvH95ymc58OmM1mXNyc8Qnw5tXz1xTmFwHg7uWKp487RpOJdt1bWydtAZkgsdffXGejFQnWc0g3lCqlDY21876CA09U0oRukRq+b0KukMpDiCJturdAZi0nbl+9m7TkDCzWDFNCsckxGAzSAG8y8/xRNNmZuQgCBFevisViobxUkotPS0onPiZeus4WqBoWRKg1c5PL5IRFhtCiYxNMBpMEg9aoEEXo2r/Duxwi3i4EAeRv+fpv/5SgEQThjiAIUYIgPBME4Yu/sY0gCMIKQRBeC4LwWBCEev+I0/rfMCH8dfQGtlj/vwXo8y7/eLN2jVm2+WvqNZNIPoZKI4JMQKl4o+IhWFcjEnrCbDaTnZ6Dk7MjINqEzVQaFe16tUEUIeF1En5BvrTo0IT4mATkCunmNZlM5GblAQIlRaUMHNsXJxcHstKyqVm/Bj2HdOXWpbt4eLvTsGVdAL5Y9QnZ6dk8uvWYXg0G03VAR9r3asOT+8+p2TCCud/NxNXDhV0b9nHu8AWGTOhPo1b1cHJ1ZPOKHZw+cA6ZTBoszWYTens9Or1OWj0bjDg6O1BeWsHdq/etjVIwG03kZOYR8zyWyHrVbZBEhVJh7RXIMVlLTBXlFVQJCQRE22DSrkcbG43fYl3VXTt3C4PByO4NB9j+6x7M1hWrRqvBbDKjVCmwiNKqXkKlmKSmvEzAbDKT8DpJEpIrLMRiMtGuZytAoEHzOgyfPAhEEUdnR/ZvOYqXrwcuHq62gapLv/bI5DIbTj72RQKvnscCUsNTtIg8f/QCV3cXW4/DYpGgkUaDkRp1qlFYUES/UT3xr+rHk/vPcXByIPpxjA12KVjr7jK5wIqv1pCWnI4gyKgWGcp7c8bQomMzBo7tw/Xzt5j//WziXiawffVuvv3oB375eh2frZhPfEwiSXHJzP1uJoPG9eXFk1f0bz6S2Og4Zn81DQ9vd07uP0dYjRC2rPidPo2GUFxUSmpiOsFhQZw5dB4Pb3dadGiCs6sTgiAxwWSCQG52PhmpWQiCwNkjFxEEqSwlAqJZtKnQKpQKAkMCSHidBEhZodlsZss9NZfidLby2l9XEqSyosD1s7cQLSKd+rQDIDM1C0EmoLUixpRKJaJFyh4l5JkZixUGfO/aQ5zdnG2Q34i61SVEmcmCiEj9FlJ/yMXdBQRITUjn/vVHqDRKOvVuj6FCQkkd3nHiXQ4Rbx3vsKlcCbQTRbE2UAfoIghCk7/apisQan29B6x+h6dii3/2hCACZwRBuC8IwnvW9zxFUUwHsP7r8bc+KAjCe4Ig3BME4V52dvZb71CpUlK7cU0e3X6CXCG38QAMBiMNW9S3ptBGK6dAGnQEQWDflkPI5dKkEVEvHIvZwtmD51EoFdRuGClZVEbFUJRfhEIpR0BK1/Nz8pnxxRS+WDmf2YunYedgx/DJgzi84wRHdhxHtIgc33Mavd4OlUbN3av32LJqB0aTCQcnBxwc7flqxlI69mnLg+tRfPvRjxzcdoSoO0+JqFedWV9NpbiwFLPZQmpimo0AJi3bBV49iyUzNROjwURBXhE6vY7w2mFSE89klgZdRAryCnFwtCMlIY0GzepYSwRSptCmawubIml4ZBgandoK2ZVu9osnrvylPyBILzdPVxuZ602JTQBro/IvjWyL9X1BkGGxiFaIqEBBXqG1hCdlJ6f2nbUhkcqKyzBbLBTkF1JcWExqYhq5mbnUa1obR2cHju858wfoqkiNuuFUqxmCzFoObNK6ATKFnKrVghg1dahtAg2uXhWZTEbcywTMJguHfz+Oh7c7H387AztHCSor9TcE2wQnWkQUcgX5OQXM/GIKglzGxDljSE1M4/ie04gWCy8ex/Djp7/w6NZj9PY6Zn05lZoNavDFqvlkZ+by+5o9XDt3i4Yt6iKKIhH1I4h9mUB2Zi6NWzVgyoIJUibg7sLoqUPR6jXEPI8lP7cAi8XCqQPneR71Ak9fD8Kqh+LiIbmgVYsIkcpD1mun0ajR6rUSixwBuVzGuJkjadGxKVF3nmA0SCUgRAiuVsXGwZGwYFC7UU10djpbJtGiQxNJxsJk5MzBC8hkMqlUBZjMFts9IchkNvSeTJBRt2ltFEolgkzA3sFOYnqLIinxqZIUukqBvaMd+347jMlowtvfE5PRRGFBEUUFxRgqjJw9cgF7RzsGjetLzyFd3/r5f2chvDvYqSjFG2NopfX117X83sBW67a3ACdBELzf6Tnxz+8h+IiimCYIggdwFpgGHBFF0ekP2+SLouj8X/2dv6eHkJ9bwOYVv3Pr8j1irDA5kCCiWr0Wk1FaVRfmFQKgVKkIjQjm+cNoTGYzMqtQW7lVxkBqYqpsvIPKikpkMhlqjRrfQB/iXsbTa1h39m85zPiZo9jwwxbkChmNWjXg5sU7APgEePPtus95dPsJpw+cJTcrj879O+BfxZeQ8Krs2rCfaYveZ+rgOSTHpXD47i6+n7+cK6evo1ApCAoJJPZFPJ36tOPKmRuUl5QhvmkwIMFCW3Royo3zt9DqtajUKspKy63ZQjkOTvZkpeegUqsoLS5BJpNKAHWa1uLpvedSE9nHg5KiUpRqBYV5RdKAKGCt8/5Fv7parVBadGzGg+sPuHvtIQAaraT1o9VqqayoQKVWYzZLNXhJd0gyn/EN9CEtOYOgEH9iX0juaM6uTsS+iLcymUXqNanN6+hYzGYLY6eP4PKp6yTHp5CfW2DN3qTDkcms7GeLxAvpO6oX+zcfRiYTqNu0DmlJaWSl5+Dl50n9ZrWJfhRDXEzCH+4HuSQMaLLQpX9HTu0/i52DHncvN9KSMnBydURnpyU/pxD/Kr68ePwSZzdncjNz6TuqFxaLmYNbjxFRrzpfrJjPmSMXyEzLxmQ08eTuMwyVBvqO7kX9prXJSM3ih4UrqFYrjCqhgeRm5XHh+BVJVVWh4ETUPlZ+uZYu/TrQpG1DLBYLqQlpjOvxAfk5BVKGq1Iyee54ln+5GkQIqVEVvb2Ox3ef4ujsiJu7Cz5BPjy+85SC/EKrXpaATLBmiVZdKkEQcHFzplajSK6duSHBR5HWFwqFEo1WTYdebXHzcmXHmj2UlZbbkFnuXq7kZOWh0WioqKhAZRUHVCgVVK9djaLCYmJfxNOwRV3uXXtoXShYbAuEes3qEPciXkJJmcz4BflQWFBMUX6RlE3KZFZyosX2zKrUKinr37L4rZ5/eEc9BF+1ePt9v7faVvlZXCKQ84e31omiuO6vjkkO3AdCgF9EUZz7V78/BiwRRfGa9efzwFxRFN9u4HvL+KeqnYqimGb9N0sQhINAIyBTEARvURTTrTNg1rvc58snr9i+ejcWi8WG2wfpgSgpkuR3lWqjDS9tMpWTHJ+C2dqYlCvkGCsNNGhRl2cPX1BeKkk7N+/YlBvnbtkgOxazhZzMHBRKBXeu3kOr0/Dk3jPcvFxZsWMpWenZ+AR4021AR6rXqcaA5qPISMmkTdcWLNu8mA+HfoxfFV/2bjpEdkY2F46Fk5ORi8Vs4ZfF66USiCBgZ2+Ho5M9ao0arDV8d2930pMzpBMWpFpscUExglVauKSo1IYiKi8rp7iwBJlcoKJMEtWTBgqB5w+ibQ9gZloWSrUSrV5CBOntdAybNIjzRy/x6tlrax3ZTHTUS+JeJtjsQ9807JVKJSIicivj9k1jU8JASr2K8rJypsyfwIGtRwEozC+ipKwSMTgEMT4OByd77t94ZO0jyHB0cWTqJ+/xXu9pgJRJYF1tms1mRJMEY5TJZRzZcUKagEQLD248RJDJcPd0JT0pgyMJaQA4uzlSmF/MiEmDOb73NIV5RbTp1pzy0nK6DOjIucMXiX+VaJPwMFgNdBq3bkDDFvV4cv8ZgcH+HP79OHYOepQqBZ4+7ozoNBGT0Uy1mqFsPPYLLYI6YTKaWLf0N1p0bIrZZKJhqwZ4+3vy4aJJ3L36AGc3J2QyGUd3n2Tx7GX8uPUbPv1gMRt+3ELPod1IT8mgqKCYZu0b4eHtjoePO+5erujsdBgNRiLqVOfAtiMAaHQacnPzefUiDpVKiVqjprK8EkcXBxQKhWReZL0eFtFCWVk5Ny/csflu63Qa3v94HDmZueTnFHBy3xnKrZLkb6xi1RoVNepW5/blu9YFkkUCYIgCIvDs4QsEmVRqio9JYuD4fhzcehSzxSBNviYzD248pFm7xty4cBuzyUJCbLJ1TSNdU5PZZCPS6e11NG5VH5lcTotOTd/lEPFWIQgCwtsjiHL+uwlIFEUzUEcQBCfgoCAIkaIoPv3jLv/Wx972AN42/mkZgiAIekAmimKx9f9ngS+B9kCuKIpLBEGYB7iIovjxf/W3/p4MAWDKgJk8ffCCUite+y8HJQ2SCoUcmVxOy07NuHPlHsWFJTRsUZ9nj6IJqOLLyyevreOYSHitarx4/BJHJwec3BxJTUwnoKo/omghOS7V+qBJTTa1lenq5efJ7sub6VZnAK7uzqzcvYzvFyxHZ6el24DOlJaU0rRtIyrKKhjfcxqiaOG9j8YSdfsJOVm5dBvQidcv4rlz5R5P7z8ntEYwXn6eXD9/G79Ab9JTMikqKEan1+IT4E3M09dMXfgeRqORuJgELp+6jrHS+BdmqShaV4pSWvEGlfMGyw7SACyzGtDkWfWfQIKGduzdjif3nko1a8lFhqphQQwc15c9Gw/g4uFCYW4hCa8TpS9ZgMBgf0xGM6mJaTbuAKIoEaZUSnwCfEiOSyG8UU1i2/VgZk13jn6/luiol7ZSlbOrI2WlFZSXlkmNTGu8WXFK5yVYWcXSBN+sQxNuXbyDIEioo7ycfGuNW0ZoRDAvn7xCp9NSViYJEobXDOV1dBxGo0lCY1lEqoQFYjFbSE1KQyaTEVYzlC0n1zBjxDwe3XpMZUUlVcKC6DOiB4mvk8jLyad67Wp06dsBDx93Dmw9gkqtIrxWGFqdhtFdJtF/TG8uHrvCuBkj+G7ez6w7vILQGsFs/HGr1ORdtw+fAG/iXsZjNEoNXUOlgZadm/HTtiXMnfApZw9f/At/BKygCBG1Ro1SqbD6PKgAbB4TIJHL3sCHg0IDSLQOxDKFjMpyw5vnFbVGRf3mdbl18S4iImq1RCIzGIzWSV26H8JqBJOTlWftn71hqQuIosX2PUqoPgGtXoNSpaQov0jKsLLyUKqU6PRaGrWuT2iNEDb+uBW9nQ5XDxdiX8Tx8ZKZfD//ZwTrJNamawu+/+3rt37+30WG0MBPI96ZHvhW28o/jvm79icIwmdAqSiKy/7w3lrgkiiKO60/vwTavCmvv6v4Z/YQPIFrgiBEAXeA46IongKWAB0FQXgFdLT+/E6jfvO6hNcKlRAmCjmuHhJKQ8LwS7wEdy9X7B30hEeGYjFbuHP1HqXFpTx7+AIHFwc8fdwxm8zo7aXGm0KlQK+XHMLSk9PJSMlEkAnUa1abLgM60nNIV8ZOH4Faq8bbz5OK8gqKCop5+iCaj8Z+Qqc+7bhw7Ap3rtxj5oj5HN5+nBP7zrDr0iY692nHgS1HMJnMJMel0qJjU8ZMG8ainz4mLDKEBcvm4OXrSWlxKS+fvCI/p4AmbRrQsU87Yp6+xiJa2LlhH6cOnOPMoQs2dc+IutXfzFUIMmmAVCqV1pq6hDYRZALObs4oVUrUGhV52flSPd4q39CyY1NuXLgtwQBFCIsMBiA5PpUfF60iPSWDZw+iiY9JsA5A0sCdmphGVpqU/AWHB9F9YCcJAiuXiGm+Ad7YO9nz/FYU4g9L+Xn8PHIyJfHBpm0bolAqyMnMo7S4FBGo36wOLu7OaHQa/Kv4IVqkBqnFIhIUEojaKvdx98o9mwaPf1VfK8NXAhBUlFeiVCqorDRQr1kdZDKBgrwiSZRPpaJxa+mZzkzLIis9G3cvdzRaNUmvk1i/bDPJcSnUbBiJT6APfkE+rPhyDVdO36DP8B6s+HINc8Z+wqAWo1n51Voi6lYnpHpVfAN9OBd9hNKiEjJSM3FxdyGyfg2cXBwBGD9rFB17t0Umk6HVa+g1tJtUzmtSi0ET+tG8fVO2/7qLc4cvgghBoQG4e0lidK07NcdsMlNWUkZhfhFGoyRh/mYyt1ikcp+Xn6dEsJMJ1KhdzZrNQbXIMNt1btujJW27tyT2RbxNqkQml9F7eA9qN4y0PlkiZpOJmGex1skA22QAUinPydmB/qN7oVQrreZJkojkiCmDcfNwRaPVWM2Oijh3+BK/r97N8MmD6TO8O/ExCfhV8SXm2Wuatm3M4An90eo0zF3y9qS0dxYC7xJl5G7NDBAEQQt0AF781WZHgFFWtFEToPBdTwbwTywZiaIYB9T+G+/nImUJ/5CIe5nAlpU7KC+rQGenpbKiktzs/D8lX6JFJDkuheS4VBq2rGcjor1BGJUVl+LoaI8gCMS9iLf9ThSlpqjRaKJhi3rEvojn9uW7dB/chaunb5CZlo1SpeDK6RssnPQlSpWCVp2bc/38Ldp0bYlWp2X76t0sXr2Iy6euc/74Zbz9vW3NVv8qPhzbfZKd6/Yy9L2BePt58fP275g38TOCq1UhvFYYjk4OPH3wnFuX7mGxyjUICORm5ZGTkQtItVeZXM7LJzGotWocHO0pLyvHzdMNQ2U6js4O5GTlSlmCaEGjVaOz06HVa8nPzufZwxdE1qvBs0fRXDt3C0QotWo0vXjyyrpqlETVXNxdqNekFlfOXJfKcKKI3l5PWWm5tSZsJvZFPGWlkvsXFmk1ev3CLWQyGc07NKGkuJTHd56QZVVOzcvOx2Bl/opm0ZqphfHgZhSiKJIUlwwCKJQKHJztJcSSdbI3A41bN+Du1QdER8Vgb20W125UE61eQ/VaYZw+cJ6HN6IQESnML2LUtGFcOXWDgKp+3L/+yCrLITF5Z3/9IXs2HWT9ss0olEqatm3E9E8nIZPLuXD8CukpGXw2dTG9h3Xj4LZj6O10BFevglKpoLy0XLIwBSvhUUZGaibf//Y1IztOpM/wHuzfepjxs0bRtkdLTu0/x9N7zwmo4svUBe+RmpzG2u9+I+FVIgiSkmjdJrU4uP0YAgJ5uflotGqpWYyIXC5n+KRB7Nl00GYk5OTq+AcuCVy/cBuFUo7JZOTx3afUqB1G9JNXXDl5Hb293lZuFBAwVBrZuW4vljdijkaTFV4qMZblCiuSTCagkMlBqcDB2YH9m4/g6u6Ck7sjr57GYmevY8fafdZMRSAn0/DmSaS4sITf1+yWSJFmC0mxKSTFpiAIEB+TQECwP0rVP0P+WniXOkXewBZrH0EG7BFF8ZggCJMARFFcA5wAugGvgTJg7Lva+R/j30664uXTV4ztNgWTycTAsX24dfEuyfGpttW+p48HsS/jbSWTN+JuojX1lStkkhSCUoGLmxM5WbkgCmh1GpzdnMhMy5YeBmvDWS6XM3h8P47uPkWbbi04ufcM1etUI+r2U9QaFT9u/xatVkPNBhE8vPWYc0cu8dE3H2I0GOnTaCihESGs2LkUgPs3HjK5/yx0djqmfzqZnev2smTjF0zqO4M2XVtwYOsRW+nkj8Jxnr4efL/5a2aPXEB+TgHte7YiOyOHBzcfS1+KFc0jWEk/ejsdKrXKal5vRqFUotGorR4NjXh67xlqnRqTwUhOVp5NxvrNqvEN81Ymk1mJc2abFIWTqyMT54zlyI7jxFm/ZwQICg0kPiYRk9GEk4sjoihSWFCEVqe1EsSk7MHZxZHc7HxpMhEtRNQJJy+ngJIiyeazILcQvb0OrU6LSq0ksn4Nzh+5hJObE4V5hZKktiBDb6/D0dmBFKvGjp2DHp8Ab1IT0ykvK8fewY7C/CKplFS9KpPnTyCgqj8zR8wj7U1/Bkniom33Vty4cJuRHwylftPajO85lS592+Nf1Q+LKLJ5xe8gSgTCnRc3ERYRwtC241Ao5Iz8YAjxLxPpNawb04fPJbJeDR7fe4pOr2Pg2D4c2n6MUVOHEl4zjBEdJ+Li5kSTto3Y9usu2/cuk8no3Kc9hkoD6amZvHzyyjbA/3Xo7SU/ZY1eQ4nVGrWyvBInNycKcgoRESWlVI2KooJi2/Wxd9Cjt7cjPSWD5u0bc+vSPURRMkB6038w/+E6qzUqiX0ukyHIZLh5uqJUSVyErIwcgsOCeBUdh52DnoK8QsmJr6CYKqGBJMYmYxEtNnkMURTxr+JHRUUluZm5aHRaykvLJXJlRSWd+7Xny1WfvPV48U5KRgFa8e7Hb6ehJJv2/P+Iaf9bo1pkKD0GdcZitrB30yESXiehUMqRKyTv4Pot6tJjcBdbueQNQatVp+aMnT4Cdy93mrdvgqOzAw2a12Xw+P40a9+Y3iN6kJdbIClkmiTmZ88hXdDZadHb6zFUGji++zRGo4mpC9+n1zAp9d+6aicfjf0EmUxG/WZ1mLtkhg2ltPS3rwipXtWGfddotfgGeuPl68GhHcfIycxl9Tcb0Oq1nDpwDgBnNyd8AryQK+RUCQ1EECA7PYe9Gw9SXFiCRbRw5vBFHt56/JfSkLV+LCKttkuLJcOW4PAqePtJbEyj0URlpYFLJ66Qk51Lj8FdCAwOsE0CXfq1R6fXWuU9JPiizCpjIJMLmK3nUFZSzrIFy8nJzJVq4UilBJ1ei1+gpIhZVlYu4eqRXM/sHPTIFXK6DeqMxUqUe6PN4xfkS5WwQMpKykEAJ1dHjAYjRQVFZKZlc/7IJdx93CnIKZDkGqwSzq26NCcpPsUGk62sNBDz9DVmk5kxHw5n8vwJUgNTpSQ/r5BZoxYwouMEkhNSrc1raNm5KRqdhhN7z6DWqKleK4zsjBwEQeDUgfOkJKax6cdtiBaRhi3q8tO2bwmtIZXURk8dStcBnZj/3hes/f43tq3eTWS9GvQd2ZPcrDy0ei09h3TF1dOVW5fu4unrwdnnh9l9ZQvjZozA2cURjU7Dih1LOfZwLzmZOVw8eRWD1UviDZRWJpMRGOKPo5OD1VuiAntHexwc7LFYRMmvQhAwGUzo7LRWaK6JgtxCa8nNTO/h3fhs+XyGTxqITCbj5sW7Vni29Gw4uThaxSKt/TJAo9XQdUBHXNxdGDdzBGWlZaQmppMcn4rRYOR51EvMJpOVPyFBtGUyGcnxKVgsFhwc7dFoJMtWUYSUxDTqNqmJCCz8YQ6evh4YrN4MDo72/0Ojxx/iHZaM/jfFv92EADB5/gTsHfTSzezsgEqlYtnmxag0KuJexHPt7E1EUWTIhAFotBoEQSA7I5vtq3exZMMXVK9TjfzcAk4eOMeuDftp1Ko+CTGJmAwmLKJIo5b10Oq1HNlxgqL8Yrav3s3XqxfRuHV91uz/mbpNavHRN9M5EbWfgtxCgkIDObnvDA9uRtE6uCtnD1/gyunrHP79ODvW7uXbj35kSJuxPL73lIO3drDr0m8EhQTQpX8HEl4nkRKfipuHK2azheDwKqQlZ2A2mUl8nYzOTgcCXDp5ldUHfsLF3dnKQJZqyBarzeWb8pLeuv3zRy/Jy8mXtGcE0DtobU1IAYH1yzajs9dZm+UqEl4lYzS+IfkprQJ2og0RZBFFajWMwGIx06RNQ4oKiv6ie2RVKfXwcQfAwdGekBpVUSjkePl5WtFfAulJGQiCwOBx/VCrVTi6OHDuyEWpSSwTmLpwEp8un0tYZIgknmYyodaoqVotyCbZYO9oh4u7M+ePXsbJxRG1Rmqy9h3Rw2qLWcmmn7Zx8cRVVGolbXu0omv/DpJQYaWRYZMGolSrEC0il45ftenzT543gTqNayGTy2jWvjHrj6xg1AdDeX/uWE49OUBlhYG7Vx+wb/NhhrefgLu3O0PfG8DAMX0kzSaTmcunrhFaI5j+o3tj76AHwFBh4PSB87x8+gqjwUhpcRlRd56Sn1dIRVkFV8/eZOWXa0hNTEcQBPJz82nWrjGd+7VHoVTgG+hNcnwKDVvXtyryWshKzyYpPgVRFHF0dkAmE7Bz0DNq6jB8Arxo1EoiwTZsUY/uAztzaPtxPpnyFSf3nbU9Q2/kK1QqFd7+npLwo1xO5z7tUalVlBSXcmLvGXKzc/nt5+1WPShBkgexcn8CQwKoWi0IgIL8Qtu9KAgCZaVlVkMjDS5uTizb8jX3rj3Cv4ov7bq34uNvp0soKBFePHn9PzV0/CUEAZSyt3v9C8W/XckI4NjuUyya8rVtgHuDAFKrVQQES8xUAQGZXMDTx5OM1Ez8An1ISUyzipwprI05EUEmo3bDmhQWFGGorCQtKQONVk2Xfh05e+QCbbu14urpG3z87Qx2rN1DWVkFm46tYmjb8fgGeKN31HPj3G2MRiMTZo3m1bNYBAEun7qOg5M9h+7sZNrgOSQnpNKsfRNeP4vl5x1LbCv3lIRURnV+n+LCEqlMI8gQRQtyhQLRYsHdx52sNIm45+HlRlZGjpUkJiFKkmJTbMgSe0c75n03i0VTvkKpUlFeJtX1HZzsQZRW0T4BXjRr2wilSsXWX3baxPwat23I1VM3kCsk+OkblNybCcFQacDTx53sjFx0dlpKiiQNoKDQQKKjXuDu6UZGWhb2DnaUlZRJ/QZBQgxF1Annyf3nBIUG4h/ky9UzNxBFkY6923L+6CUr/FZPaXEZFosZQZDRqW87Tu0/R4debQgM8Wfjj9sIjQwhMzWT4oISm2Jr3aZ1eHD9IR7ebpSUlFJWIgnXNWpVj6g7TzFUGnFyc8JiNlNcWIKntzvZmTmYzRYCqvqTGJtE7YaRDJ7QnzXfbSQ1MZ0zzw5hNJjYumonR3edJKJuNRRKJbcu3cVkMuHk7MjnqxbQokMTGys7tEbwH1Bdf4kVX65h1/p9NG7dgAc3o1CpVUTUCef2lXt07NMWvZ0d+zcfosfgLty99oDqtaoRF5OAaBFJeJ2IKErXoGHLetRtUovfft4uGTcJAvaOdmh0Whtj2WIxo9PrSEtMp6ys3NYz86viS0ZKJr4B3lJGrZCkQyxm0WpIZB1DrGUxrU5D7xHdObDlKIZKyahJqVIyYeZIju4+Rb0mtdHoNNRuXJP5Ez5DpVHh6OyInYOexNfJ9BzajSunruHo7EB8TCLB4UEMfX8QG37YQmT9Glw5dQ2z2cLQiQPIzc6jXtPa9B/d+62f/3dSMgrSiXc/C3urbWXjov5lSkb/dhNCeWk5fRoPIycrF51ei1KppKiwGAcne8wmMyVFJTi7OaFSqSgtLadtt5bcvXqftKQMXD1dyMvKt6pXhvHswQuJl2A0WnV2JKtIByd7SopKbQOfRqehTqOa3L/+EGQCNevVIDkhhdzMfMbPGkV6cgZhESHUahRJ7YaRJL5O4t6NRwRW9efhrSiGTxqEzk7Ho9uP+Xr2MnwDvagSEsSML6YAcOnEVWaNWoBfFR9Cwqui1mro0q89c8d/apW/lrimblazentHPQaDibJSqTbfqnNzrp6+TuturXhw/SEmo4mq1asS/TAatUZNSI1gyWfa0wWLycKNC7dxcXfGZDRRWlJmIyYpVRLXoHPf9pw9fNEGLazdOJIXUTGUlUjwULlCbhO8M5vMKJRyXN1dyUzPomHLesQ8eY27pyuxLxNwdnPGUGmguLAYwFoqkjIctUZFj8FdefYomsTXSZSXVgDg7ObMmA+HsWXlDgryCnF0dkCjVVNSVIZaoyQ/t5ABY/vw4PpDXkfHI1fI8fB2Jy87j+6DunDm0Hm0Oi3ZmTmIFpFWnZvj4OxAs3YNadC8HmO6TSYtMR13bzfysvL4dPk8jAYTqxavZdLH40iKT+XI78cxmUz4BPqQ+CqRdj1ao1AqaNK6IRXlFWxfvQdHFwc2HFnJmUMX6NCzDQ9uRXF892m+/HUhSz7+ERDwDfTm2tmbdOzdlsunrnPnyj36jepNRN1wvvnoB1p1bsaN83foO7IHnfu2Z1L/mTg42pGTlWcDOYAk2XHw1u98OGwu8S8leZWh7w3k+O5Tf5G6lkuOcm/gyIIgMPT9gZw/fJGcrDybZ7JPgDcZqZkgSrySNxOHJI8t1fx7j+jBiT2nqaww2JBKdvZ6W9nS08cDpVJBamK6lUAoEl4rlJdPX0s+3OWVKFVKmwS6xWJh+meTWPf9FpxcHclKzaJBi3pEP47BP8iHbWfXv/V48U4mhCo68e4X1d5qW9noR/8yE8K/Vj7zDuLe9YfkZufRvkdr6jWrY2NtFuQW4l/FD7lCgZ2Dnoy0LMpLyzmy8wTZGbmERgTTuV9HAEZMGUJsdDwW0YKdgw6FQoGHtzsWi4Xw2tVY9OPHyBQyug3sRHjtahgNRgJD/fEN9AFRJDAkEGdXZ/qO6km1yFAi61XnztX7TB/6MR8Mms2jO0+o0yiS/Nx81i3bzOvoOL6Zs4xXz2PZd20rJoOZI7tOEPsinuKiv/Q9UhPSuXz6OmcPnefMwfO4uLvgE+CDWq1Co9Pw5aqFhEZUpUnbRtRrVtuGqy8vLUcU4dLxKyiVkiRxfEw8zm7OVK9djZhnr3nxNIZrZ29SWiqZ2/QY3IWB4/pi56BHJpNJfQu5HLPRzOkD521GJqIoEnXric2URWEVOZOa9FZMv0XE2c2Rek1r8/T+cyorDVJZRhTJzcpFpVLiX8UXhUJB664tUKpU+AZ6o9NLIIDiwhIqyips1zg/J58VX6yhS78OIEJhXhHVIsMoLiwmNysfrVbD0R0nqNWoJt5+nljMkrCaodLI3WsPMFQayErPRiaT4eHjzv3rDzlz8DyLpixm6qA5ZKVmIZPLJKKgKJKamE6/UT0Z9cFQcrLyuHnxNv5V/Vi66StadW5Gt4GduXD8CoIgsHvjAW5fvoeh0kDbbi25f+MRX874jpsX77Bj7V6unr2BsdJoc4kbO30EG4/9wpCJA/h1348s2fAF42eN5MzhCwC0694aECkqLEar1yCXyfDy9URrtT19Ays2GU38sGglia+S8A/yQQDOH71EeXkFZcWlhNYIxsXdBRGR0OrB1G5UE7PJzPZfdpGdmYtGp7FlEg6OdjYtIyxWEiAiVasF0cGq73VizxkqK/6CFkIUKS6SMjOZIKOyvAK5tak+YExvRFGkWfvGTLH2bkRRxMHZHrlChquHCy5uzqz/fgu9h3WnbdeWtsyzuKCY4ZMG/08NH3+J/+sh/L8RoRHB1G9am1uX73Hj/G00Wg2ePh7o7XUEBPtjMVto36Mt9ZvWwS/Ih0Hj+6Gz02JnryclLoVlWxbTe2g3NDoNwdWCyM8pxNPHg0692yNXyHF2dcTR1RGFQsG+zYfRaFTIZFZNofRsnFwcadymPrsvb8bN3YW5Ez5l2cIVVIsIYfbX00iJT+W7uT8xuPVYCvKKWLZ5MbUaRvI86iXRUTEAzPhiCo5ODtKA0XUyE3tNY+EPc9hyeg1rD/yMSqMiMyPH1iA1VErWmVMHfUR8TBJnj1zk7tUHkpCdRs3zqBfo7CT4Y3FhMYIAdnZ6vl3/OQmvkxAtFgKrBuDoZM+Te88A2LpqJwe2HqFKWBAiIiVFZZJ2ENJq0WgwWR9awWq1aCGyTnVc3Z3pPqizFbVkllaaSEikV89jqSirZOjEAWw8tgq/Kj40bFmXNt1a4OnjjkIp59rpG/QY0oX6zetiNptZu3QjGSmZVg8EJNJbqD/LtnxNQW4hX/yygMZtGvDozmNJXE+nxiJacHF35sqp65I6p2ghKCQABEiJT8VgMCKTyRgyoR+1GkbQumsLjFbznqCwQBCkLOQNkXH9D5tJfJ3M43vPeHT7CRnJmYTUqIpao2brqp0kxibz+Yr55GTmYrFYGDtjJA1b1mP/1qP4+Hux7tByWndtQXFhCTXrR6DVa/l85Xw+W/5nod+K8kqyM3IozCsk6s5TGrSoi6evB6IoUpRfzIiO71FWVs7TB9HUbBjBG5lvBycH1BoV929EodFpSE5MQ6lWkpuVS2WFJIEe8yyWpNgk1Bo1r1/E8ejWY6pWC7Ip3WqtTnLu3q7EPIuleYcmaHVajEaTDdqcGJtE3KtElCoFomih97BuODg70LxDU2RyuU0TSavXUJBfRGJsMpdPXuPYrlNMW/Qezx++5JfF6zEYDIyaOpSwGiHM+nIaYTWCCa5RlcqKSm5evI2TqyNLf/uKuJfx2DnoadjqHyL8+d/EW04G/2ITwj9VuuKfEenJGdy78QiL2ULtxjV5dv85QaEB3L32gKTYJCyihc0rfsciWrB3sOP2pbsU5hXx6PYTRFHk2YNotHY6CnILycvOB0EqlfhW8UFAICUhjfiYRFQqJdM/n8z1MzcJiwjB29eLR7efEFEvnPXLNqPX67BztGfs9BFcOX2dezcesuWXnbz/0VjOHblE664tWLNkI95+nrTu0pztf0iJQ2sEs/H4L/RpNJTS4jLadGvByq/WorfXkZGaiaHSSEVZOT6BXmz7dSc6O53VM0HAIoqYyk2olEoW/vARS+b+xMObUQgygXY9WpEYm0zS62R8Arw5tusU+Tn5KJRKIuuFc3TXKRuB3s3LFaPBaDPDKS8tI7hGVYoLishKl2RblEqlDQNv52BHfl4hxYWlnNh3Bo1GDUBlhSRR/epZLHYOdji7ObFp+TbKSsvITs+hKL8YL18vHtx6bNP4v3H+NiVFJcz6aipfzViKKFoYNL4vTi5OrFu6idlfTkOj1XD60Hke3IoiywoFbtezNd0HdGLO2E9ISUhDZmX02jvYMeGjMSya/BUCAm27tuTqmRsc2HYMs0kSyasSFiShlo5ekpqw9joGjO7FjrV7qaio5Ndv1yMAfoE+9BnRHUcnR75fuJyxHw7nyM6TbFm1g8TXyShVCkZ1fg8BAf8qviBAnca1EASBzSf/ImApiiLTh82lbuOabPllF+9/NAZBkPHTZ78ycc4YFAo5k+eNR6uTxOpuX76LRqMmomkdm9aRaBEJjQhBLpfx8ulrstKypb6ZiNWLWsDR2QFEgeLCYkRg4pzR7N54kMyUTCorDNg52EnXIiMXURQpyBUIrxVKaXGpjeAmZZWSJ0N8TCKIkjR8RYXEPr9y5jqOTg44ujiQFJvCgNG9uX3lPn6BPgwY14dpgz/i+J4zxL6Il0iDJgsNW9bn9IHz3Lv+gGbtm1BRIZkQJb5O4tdvNjDs/QGERYZw/fxtMlOzcHV3+YePHX8KAcR/sYbx28S/3YSg0+skPRetBndPNw7e3kmfxkPR6bU8f/QSnZ2O0pJSiepfUo7OroKIetV58TgGOzsdRQXF5OXkEVy9ComvkpHJ5STHp7D2u40YjUZSE9L46bNVVJYbOLHnNFqdFp1Ox5Uz15HL5dy7+hB7Rzs2/ryNuBfSCqdRq/o4ODvSokNT+ozowevoOOzsdRQWFNGwVT0WTVlM9TphPLr9hI692tKxd1t0eh2NWtXHxd2ZgtxCdm3Yj5OLIyajCWc3J9w93bh29iZms4UmbRty+9I96jerzV2rqFjtRjWZ2Gsa5WUV9BrSjX5jejK++wfUbBCB0WQi6u5Tnj96AQg2VrdCIadjn3ZkpGbx7GE0FpOZe1cfILOKqwWF+HPpxFWbqxpgQy65erqSlpSOxWxBpVTSvENjrpy+icmKTJIJMjr3a8/pA+ek0sqGA4jWElO15g24iAP1ZOVkPY3GL8iX88cus27pJmtz08LRHScZPmkQgaGBkupnRAjN2zch6s4TtDoNTq6OpMSnUq1WKKOnDqO0pIxrZ26QnZlLWWk5KXEpjJsxEo1GTe1GkVw5c4OKsgoGTeiLUqFk6ifvkRyfyuT+M1EoFKQlprNz/T7GzxpNenIGFlHk0DZJg8k3yJvigmLycwro2LsdcoUcnV6LnaMdW1fupHajmgx7fyB+Qb50qdWXviN7MfurqRzbc4rKMglXP3PkAgpyCxCAspIyTu47R/Tjl2w9vZZqNUPpMbgLY7tOZsjE/lSUVWKxWOg5pJvEkP5qjU0A7uaF25LOlFni1ETUC+fRLWlxE1w9mIXL5vDjolVkpmWTmZ7FzrV7yc6UCIyevu5kpGRYMzxsfBUXN2fuXH0g9Y7+sACuWi3IKlsuxZ3L9+jQszVHrb0Es8mCm5cb1euG06RtI3769BfJfc5iQWenZeWupexYu4+bF+/w7MFzmrVvxOHfT/DqeSw6vZZx00dw5sgFkmJTuH8jiqTYZBq0qEv12m9Xy3+nIQCyf63V/9vEv11TOT4mkREdJyIIEquzRp1qnNh7lrzsPCrKK+kxuAsOzg44Otuz+tsNyORyPH09yEzNkvgFCLi4O2NnL8FWG7dpiIOTPbs37KeyvJJ2PVrz6M4TstKycXJzxNnFGXcvVxb+MIf3ek8nMy0LlVqFm6crdg56ajaIwGKxcHDrEboP6sKEWaOY0GsaIdWrcvfqA+q3qMP964+oGhZEZUUl3Qd15r2P/kxSLC+r4PLJq6z6Zj0ZyZnoHfSE1wy1DoZa9A6Semt5WTmOLo60aN+EWg0i+ebjH7BYLPgGeOMb5EPMk9cYjSZCawTz7GE0grU04uXryesXcXTq3ZYjO05ahQFlb8ysUGmUVFYY6DeyF1fP3sBgMGLvYEdyXAp1m9YiOiqG8tJyG5mvoryS4sIS5AoZJqOZ5u2bkJKQSnJCKp/88BGbft5GZYURnV5DtZphnLnyELF2HdR5ucwf15UvZ3yH3k5Hg+Z1eXz/Ge26t+Lg9mO2pqbOTk9E3XDJ78JglKQ6TGYSYpPwtZLPnFwcGTZpELEv4jlz8DxOro4U5BZSp3FNBAQe3JKyptoNI2nSthFmkxmNVkX8q2R0Og1BIQFs+WUnuVl5RNarTlFhMZ37tKd+i7rEPHnFD5+sRKVW4eLuTFZ6DrUaRhB15ynLd3zHmu82oVQqWH9kJR8MnM29aw/Zc3ULi+cso7y0nJ9/X8KYrpOZ8/U0nN2cWP/DFh7ffUrVsCC2nF4LwI+LVrJrwwF+2PI1n079BrPZjLOrM8nxKejtddRrUpvr52/bvLYBvH09KSsrp7LCQMtOTYl7EU92Zi4mowmtTktBXiFmk8mGGnpjHvSGn/KmcQzYHMxkMisfARHfQB9SEyRjpjfZ3Bur0XEzhrNl5U6MBqOt0SyTCciVCtp1a8npg+dZe2gF545c5MLxK+Rl59s0lhq2qMv9m1GYjCbcvd0knaOWDXh4OwqZIMPd241Vu5fxtvFOmsohevH2j5H//YaAovedf5mm8r9dhlAlLJDxM0Zwcv85bpy/xfXzt2jSuiHZGdk0alWf43tPYzaZmffdTHoO6cqRnSdIs2K8q4QGUrN+BImxSTx/9JIZn09h66odaHRaSq1sWkEQGD9zJMsWrqCspJx917bx+5o9gMCqPd+zb/MRxn44jGePJGJORmoWL6JiEAQZzx5G07/5SCwWC9VqhuLk6khyXCqH7uzkdXQcl05cZcLs0X86n0e3H3Po9+OYDEbKSyvwCfQiLSlDshmsNFK/eV28fDw49PtxWnZuxsgpQzi+9zTfzf8Zd09XstJzSE1KJzUx3Xb8j+48RiFX0GdkD0QEbpy/RUVpBWcOXcDRxYHC/CLJ1MZkpk6TWpK2T1o2J/adxtvPk7iXiZQVl1lFzEQqyv/Q8M2VBh25XJoMdHotedl5WESRsR+OYP2yzQye0J8tK3eQkSrVmf2CfEm9dBFHTxfa9WzNmqUbMVQYuXTqGm6eLtYsQRqoRBH8qvjgG+RLXlYul09dt6KaJMx6WUm5zW/h0e3Hkmsbku+yUqmQSoOIBIUFUFxQQs+h3fj2ox9Qa1SSsq1Wg0Ihp2XnZrTt1orTB8/RpG0jNv64ldfRcQx9fyDpSRkMGt+PsdNH8OTeMwSZjDqNI9m76RCR9arTfVBnRIuFIztPUJBbiJefBz4BXsxZPI19vx3G3tGeRq3qkxyfik+AN3eu3GfMtOH0HdkDkJR5j+w6iV+gDxH1ajB53njcPd2IfhzDhh+2UFpUxvVztwmvHUbM09c0bdeI5NgUCvOLKCospl6TWpw5eMHGZtfrdeTl5OPgZE9ZSTlavYai/GJJGgTRNgm8kcd+o3JqsYgSLDslC7lcTmpiGg1a1iXq9lOJuW6yoFDIKSspY813v6HRSmVCJzcnCnML6NS3Ew7ODlw9fR2ApNfJ7N54AAGpDNu1XxcKCoro0rc9z6NiKCkqoU7jmhQVFHNg6xHGTh/Opp+3Ua1myD9krPgvQ+D/yQ7s/4On9N/HsEmDGfreAEKqV0Vvpyfm2WvqNa1Dpz5tkclltlVV49YNrdpcAm17tEKr0zJgbG8cnR0xmUzcuXKPwvwisjOyGf7+IGSCjDtX72OoMKDWqNFo1PRvOkLyX7h0l9ysfOo1q41FFGnRsSlGg5HlX6ymXc/WLN30Je16tGLsh8Np3bk5j+8+5b05Y8hMy+LGuVs8f/iC6+du2SCeAI/vPmXV4nUc2XmCs0cusWzzVwwc2xfRItJnWHeCw6tw8+Idzh29hEanISUuleS4FI78fhyjwUhQaCCBoQHIZDI0Wg0u7lKjNLCqPw1a1uXV81iun7tBRkomDVrUpXajmuTnFFjtQyX7SY1GRXa61MA2m8zExyRRp0ktyR9Cp6Z+szoIWD14jW9c0WQoraqbgkxGzQYRpMSncmTXCTLTs4l59oriohJbU3zQ+L5WxFE+P36yktKiMuwc7dDptZSXVXLpxDXsHe3R2+lwcXMiPiaRQ9uPEh+TRJ8R3encrz1avRY7Bz2OLg427Zs7l+9TWVGJQqWg99DudBvUGQCtTkvS6xRKi8tITUxj8epFKFVKHJwcaNyqPiXFpVw5dZ09Gw9QUV7Jwa1HWLnrezr2bkf/piP4YvoSxs8cRVFBEQe3H2PuuE+JfZHAex+NJSM1k5zMXFIS0/hyxnfExSRQq2GE1Nx/9JLje0+Tn5tPSnwqyfGpBIYEMGnuOHoN68av327g2YNorp65QUlhCf3H9uaTyV/x06e/0LBVffR2Ojr1bc+U+ePp1LcdPQd34b05Y5i3ZCYffTsDlVpFQBU/TCYLbxjFLm7OyBQSQbAwr4jAYD+JpWyxWAUCzTRt15jGrRrg7OaIp487SpXSZpBUVlIuTSzWxvKLRzFYzBb8q/i+0bQDJE8KgN2XN+Ph6QpWYtrBbUdJTUxHoVKyZulGRIuIl58Xu69s4cLxK+Rk5FKtVpi1bCVy/ewt4l8moNFppEzUyZ7ox3/xNfmfChEBUf52r3+l+LfLEAAuHLvM4tnfo1BI0r0lRXAr+y7jZ42i7/AeHPz9GL9aJSE+Xz6fpw+jJUx1pYEJPafRd0QPNBoNV87cQG1lrVapFohSJZmua/VagsOrUFJcSo061WjevglP7j3n+wXLcfNwIS8nn1FThzFp7jiQCQSFBJCXk8+WlTsJt978q/b8wK/frmf6p5NxdHOidZcWTJ433kamM5vNTBk4i9AaIWi0GixmM59M/hrRYsHe0Y4adcPpPawbMc9fc2zXaRBAo9fy9azv8fBxJz05k3vXH+Lt50m9prWJqFud7at38+Gnk3Bxc+a3n7eRFJeKVq9FoVQQ9zKBnMxcgsOrUFpSJvlSi5JnwZsVpJuXGxkpmRKr1ih59m5fvRsffy9ysnIxm8206NiU9OQMdHY6PLzdOX/0Mkd3nUSQCXj5eFBcUMzJfecQRZH6zepIaqbWcoVSreDY7tN07teek/vPUq9pbe5ff4RGq6astJx5382gML+YXxavRxRFuvRvT35uARePX6W0uAyNVRlz0ZSvycnMRWunpaigGLVGxcYft+Dk5kRAsD+r9nzPz5+tRq1RsWXF77Tv2QatToOnr6fkOwGUlZbTpX8HqkWG4u7tRuPWDbh16S5KpYIp8yeQn5vPsLYTsFgs1G9eF79AH8Z2m0LU3ScIgsCXqxawcNkcOvVpbxPY6zagE0/uPaOkqJT1R1Yyd8KnTBvyEesPryA7I4fLp65Tv3ldGjSvS7dBnenYux3LP19Ng+Z1eXLvGSu+WgNAdnpNHtyM4uyhC3gHeLNrw35kchm5WXm0Gd2LK6dvgCAwcvJgbly8TVlxGWERoTx/GG3rHwjWxnlpSRkpCan4B/mQm5WPiEjfkT04vP0Ebp4u5GTmSSUlIDDEn/SUTCyihZyMXASroU1IjaqkJWbw8ZJZDGgxikHj+hD7MoENP2y2yWlXlldSBNg52pGbnce5wxeo06QWNy/eYVjbcdRpXJM7Vx9QVlpuE0LcvfEAtRpE0qpTs//B0cMa/4/2EP4tM4QmbRrRZ0RPCToaXgVPX3ci6oXz2dRvqNe8DiMmD2b8zJHIFTKWLlyOo7MDzm5OdOrTDrVGxZ5NBxkzfRgOjvYEBvtTUV7Bsk9WotKoqVW/Biu/WkvUnSckvkoiIzmLbz/6kdSkdPyr+LJ47aeoNRJGfO+mgyz/bDXzJn7O59O+Ye2h5bTq3JyXT15xfM9pXj+PY+f6fcwf/ymrv9v4F2Y18PDWYyrKKunYuw3XEk6zYNkcAqr6kZ6SSWFBEauXbGT5l2tIT87CztGOjr3akvBSciHLTMumXrPaVK0WREpiGhNmjaa4sBiz2cz+zYf5fNq3JMalYOegx2gwYDKaaNSqHkGhAaSnZNC1fwd6De6K2WymMK8IURTx9veivLQcVw8XKssrbbr8JqOJvNwCKsolJ7nA0EBEBB7dfkJ2Ri4gcRrqN61D9OMY5iz+EJ2dDrlCzoObUdy+fE9CzIgiLm7ODH1/IGkpGQRW9QegZoMalBSV8tE309n+6x4atqxH1wEdGT55MElxqezbfBhHFwcAAqr6MWXALPKy86nfvC6Bwf54+3uh1moYMnEAnXq3xdvPkwObjzB80kCrS5odC5bNRqvXYTIaGTiuLzq9FlEUSU/OYPmXq8nPKbDeVw05/mgf+zYf5ps5P/DhZ5PYeWkT9o52LJryNYV5hbTs2JRNx37h+N4zLPn4J07uP8uyhStYMvcnCvIKOH3gHE/uPwegRu1watSRGqbHdp9i3IwR9B3RA/8qvny5aiEZyRnM+vIDPl8xnyZtGvLz9iU0bduIqDtPAKjTpBbJ8SnkZuWhUquwWCycPXyR7MwcEMHB2QEBgcz0bHwCvDAYjLTo2JSPv5mOl68nTq5OWCwiqQmp3L5yH1EUadC8LlfP3EQQwCfAR5KskMlxdHYgOLwKleWVCIJAZaXEQbBYRBydHKgor+CXr9egUMipqDBYLU5NJMel0Kx9I2QygYFj+2AySiY4O9fvt3lf+Ab6cP9GFHYOdji5OCGXS30DQ4WBu1fvc3TXP8FTWQCLQnir179S/FtOCBt+2sLBbUdx83LFZDQSUj2Y4ZMG4+zqxPLPV5PwKpGQiBDKSysoKy7jzKELZKRk4ebpitZqWH9g61GKi0oQZDJEESpKKygpKuHe9UcIMoGv13yKg7ODzajeYrHg6Cw5VAWF+BMd9ZJfv93A8p3f8cHCiRQXlvDtnB+o17Q2dg56qteuxur9P1FaVAYItOz4Z1eouk1q8eO2b+g/ujcymYyyknIe3IzCN9AHtVpN3aa1GTJxALUbRdKwZT3OH7tMcI0qFOQVMGbaMBJfJxMbHQ8iTB4w0yaZnJKQhk+AF6JFZNLccXy+cgEymcDxPWdIeCWxgc8fu8zhXSeQyWVkpEkkLXsHO/JzCshKy8ZithBaIxiFQlJ8rayoRBAkAbutq3ZIKqcyAbNZsme8fv4Webn5DJrQl28/+hGdXouLu7OksyOXce7oJZvN554N+3l8+ymCTLD2HwoIrSEJAGZl5LB49jIMBiMvn8Rw+sA5LBYLfkG+KFUKivKLbA5qKfEpePl5olQqKC4sZv/mw+xav5/bV+6xeeUOou4+s8l3zBmziPiXCTy9H82cMQsBmP31NJZs+AJvP0+O7jzB2cMXmDfhM8pLy5n33UwGju1L3IsEfPy9iaxXnVoNIzhw63dEi8jSBctJS0onsn51fPy9SIxN5vieU6QmpnPx1XH6jewJwOhpw5j5xQfs2rCf80cvc+fqAwAqKypJTUrni+lL2LJqJ2eOXOD0gXO8fPKKG+dvS7aUcjkNW9THyUXyBE+1usIVFRYTGOJPWGQIv3yzDp29jvY9WlO/eR0EQeDozpN8/8kKcjJzSYpLsfYZBHwDvHH1dKWkqJTczDzrPmRMnjcBuVJOYX4RMU9fE1GvOs6uTjRoVteW2RUXldCiYxNysvIwGU3s33yYuo1rodGp6dy/Ix9/M5O23Vuh0WkZNWUITds2Ii87n/BakjREUUERTs4OKBRySool62G1WoVMIcO/ii+/7vvpHz9o/I0QZW/3+leKfzuUEUj6P2O7TSEnMxdBgOq1w3n59BXte7TmzOELODo5UFpSRv/RvdmzUYI/6nRalm1bzN0r9zm47RhqjZrMtCzs7PW07daSS6euAVBaUsbiNYvo2Lsds0bMxyfQi+N7zrDn6hYyUjKZ2GsaY6aPYOLs0ZSWlOHs6gTAwe1HyUrLpnGbhiye9T05WbkEV6tCQV4R4bVCGDi2LxH1qqNQ/KXKlxyfyuVT18jJzCXxdRLB4VWoGh7Ewve/+tP5vjG/KS0uJSwyhKcPohFFkZr1aki6TYKkHqqylr+cXBzIyshBqVKi0WgoKijCzsEOEDEaTRgrjYCIQilJCwD4BHiRnpJpk0tWKBUYKw2AJA1eUVGJr783yQmSkfobg/TNK3ZgZ69HoZBLUtqC5FegVKl4eu+ZJMQHeHi7sWr3D0RHveDXbzYQ8+y1VYojD58AL1IT03F0caB+0zp4+nqAIPD47lOePYimfrPa9B3Zi69nf4+TiyMZqZkEhQSgUCqtwm52jPlwGFF3nrJ/82FKi8to1r4Rj+8+o9+oXmxe8TstOzalY992rF6yEb2djvVHVvLNnGWcP3oZvyAfEmOT0WjU7Lq8mTVLNhIUFsimn7ax/dw6Ht97TrO2jfD09WDfb4fIsTLlQ2sE0ya0G14+kjjc/KWzqNukNveuP2TXun0sXvspAO3CetDNSuYrzC/iyunrFBUU07xjE66fvYUoiihVClzcXMhM+7PjbP/RvQmLCKYwr4iE2CRuXrxDp77teXDjEa+j42zsY41GjUIhp7LCYJU0EWx9IKVSSZVqQTy+85Qq1QJp1LI++zYfxs3Tle82fsmYrpMA0Go1OLs5k5OVS+c+7Tl75CIV5RVW5VtJY8vF3Zm87AIAm2SFQilHq9dRXFCMk6sjedn5yGQCwyYNYue6fXTo2YacrFyePXzBJz98xKkD57hx/jYtOjYlMNifmV9+8Kfs+b+Ld+KpHG4nXl/3H+xc/mZoW9/4l0EZ/dtNCEajiQXvfc75o5fx8HQjKzMHuUKOp7c7BflFKBRyCguKqBIaSMfe7di9Yb9NF1+n11kdukSrz4A7gcEBlBSVMGnueDx9PXi/z3R6De2GVqfBJ8CbJm0b4e7lislk5vjukxzYdozoRy849+IouVl57N9ymGmLJtkQGG/iypnrODk7UqthJM8eRjO6yyQWLJvD4ztPqNukNr2Hd+f7BcvZu+kgXQd0IjkhhdgXCZSVlP1FGgJAlEoHUXeeICAQFhHMy6evcXZ15MtfFzFj+FwsFjOuHq5E1KnO5VPXEBHp0LMNzx5Ek5GaZZMJ8A3yxsXNmSphgRzecQL/Kr606dqSHWv32iS63xCf3ih4KlVKPHzcSE/KxGKxEBDsR2FeER16tUFnp2PX+n0YDSbcvdwwGoyotWpyMiTxOJVKyfojK3D1dOXw7ycIiwxh2y+7KCuR5DOKi0pw9XBBLpOR8DqJstJyBAR++n0JxkoDH4//FHdvNzJTs2jbrRWCAO5ebkRHxfDsYbSVrCcjKCQAe2d7Yp6+prJCKm1JfRGRlp2aceXMDQKD/dl+dgOXTl5FrVGRHJ/KL4vXU7NBDT5dPo9rZ2/SZ3h3KisM9G44BK1Oy6YTvzCx1zRys/KZPG+8DSG25ruNbPppG8ce7mPH2j1sX72bH7d+w5KPf6T74M7k5xRy6eRV9l3fhpOLIzmZuajUKkZ3mYSXrwdms5moO09Ye3AF6amZGCsqKS4q5YdFKxEtItMWvc+1c7d4dOuxTftJJpOj0akxGk04OjuQnZFD1wGd8Av05vDvJ8jOyCayfg2e3JPKVW/GhQ6923Dp+FWbCqmISFBIAKmJ6RgNRpxcHMnPLbDBkJVKBYZKIx9+Oon2PVszustk8nPykctlWCySkVFAsB/Z6bkEhgSQnJDC4ztPbWAJrV5SF27evgmBIf6UFJWQkpjBtTPXUapUBFT1IykuGUOlkS9XLWTJvB8ZM234f0Df/VfxLiaEeuF24vUNbzch6Fr+60wI/3ZN5Wtnb3Dh2BUcXRwIiQjG3tme19FxOLg40HVgRwaN60dqYhq7Nuxn84rtjJo6jIRXSTRqVY+bl+5y8dgV6jWrY7WAzKbH4K7s33yYA9uOEFjVH5PJxOP7z3j+MBpDpZEPFk5kwqzRPL77lK9nL2Pukpn0G9kTs8nMoztP2L3hAAaDkZ6Du7Bz/T5eR8ex58oWbl64y8l9Zzj7/DD3rj1EtIiERQSza90+dHaSNPKFY5epUi2IL1Yt4OtZ3xP/MgFBkB7msIgQXkXH4hPgRdyLeBb9PJfv5v7EiyevaNiyHuG1wvhozEIatapPdlo2NRtGcv/GIwAcnR149iCaYqvpTM36NYisX4Od6/aREp9GaXEZgcH+pCSksX31blQqJWaT2YY7B3BycaSyopLy0nIr7t8BT28PNp9ay4+LVnJw+zEi6oSjUCoxGc1kZ+Tg5ulKj0FdkMllbF6+HbPZwrgeUxk3cyQbftxiXU0qWL3/J6qEBtK97kDKS8sJjQghuHpVoqNe0qhlfQKCfJnQR2r++wT48Pp5LGePXJQmHI2aL1ct4MiuEzy599wm0JeWnE6Ljk0pKigm9kU8rbs05+C2Y1w9e1PC6OcWsnLxWjQaNa7uLhTkFfLVmkV07deBpLgUhk8ahFwueTmv2rOMnz77Fb2dnrbdWhEY4v8nNc7oRy/x8HbH3cuVSXPHUy0yhDOHL+Ab6MPDW495ERXDlfhTNuVTmUzG6xdxpCWm4V/FFyc7R+RyOQ9vRaFWq/np818IqV5V0hcCzh25xOCJ/XlkZXcDIFgoKy1HoVCQnZ4DAjy594zZX07l0LZjKJRKVGppUaK31+Ht50VSXArXzt5EZZWuNhqNmE0WfAO9JUYyUFRQbFOlDa8VxtMH0VQNr8K96w+4d/0BpUUlhNcKIz+3gGqRodg72nH51HVc3J1IeJ1ISPWqXE04zcvHMbzfbwalxWV4+3tRUV7B+mVbCAj2IzkuBaVahdlkpuuAjmxfs4cgTzcy07OoUSecpm0b/WMHjf8k/tXKQW8T/7RTEgTBXxCEi4IgRAuC8EwQhOnW9z8XBCFVEIRH1le3d79v6D6oM1WqBZKfV4hSpaC0qIwtK3ey/ItfUSqVVK9VDZPJzMaftnL51DW0Oi33rj5EJpNRq0ENdlzchKuHCxXllZSWlHHpxDW2/bqb0uIyMtOyrJ68UlYBUFJUAiL4BnixdMFyls7/mb4jehBcvQoPbjxifM+pODo5EP8ygYWTvqR9j1YMHNcXhVJBp77teP/jsexYu4cVu5YydeFEOkf2JTMtm64DJMG9ooIifIN80Wg11GtWm4qKClvjM6JuOF/PXGpt+MGLxzG079EauULOq2evUaiVHN15ksTXSZJTWV4RuVl5CILAgu9n4+zmhJ29HW4eroBISXGJ5OMQEgDA9M8nM2rqMOwc7BBkAp4+7hgqDXh4e0gkJxEqyg28io5jzpiF5OUWYDaZkasU9BzcBY1WjVKlRKlSsvHnrajUKoJCA+kzvBsDRvfi+O5TiBZJ/sJslnwD5k74jJ5DumDvaE92ejYlRaWoVEruX3/I4wfPaNi8HkajibVLNxL9+CVyucxm7bl0wc+kJKRTXFRCm24tcXRxwMvPkxvnbxNaI5gGLeoyed4EPls+D7VGjVanoUbdauzdeJCtq6R75PfVe1CrlDy+94wBzUfywcDZDGktEQbrNa3DtjPrcHZzYv73sxn2/iAKcgvp03gYNy/eoWWnZnTq116C7WrV1GoYyYVjV+g9vDs/bfuW3y9stE0Gzx6+oEvNvmz/dTcikodFWUkZzdo34cqZG6z4ag1efp7ERscRWb86giAQHfWSb2YvY/jkQejtJSiu5F4n4OzqCALUrB9BWmI6q75eS1FhMcHVq6JUKpgwZzSbT65h56VN9BjcGblcTnlpOSXFpQQE+zN+5kjuXn1ISI2qtO8p3UNKpQRDfXz3GQqFgsRXSdy6dI8b5+/g4evB2oPLqdekFs8eRiOXyygtLiUpNoWC3EI0Wg0qlZIadcNp170VdZvUIig0gMKCYjx93EmOT6VWw5p4+3ry07ZvOXfkEuM+HM6872ZwYs9pMlOziKhX/V0PEf99CP/XQ3i3OxYEb8BbFMUHgiDYA/eBPsAgoEQUxbemHv698teLP/qBU/vPSiUNtRKNVsPqvT/y5YwlvHoex/jZoxgwqjfH9pzkl8UbbM2xMTOGc2zXKQrzCgmLDCU66iUzv/iA0IgQZo6Yh8UsGbX7Bnozae4EEl4lorfXkZ2Ry8Q5o9mz6SDD3h/I0/vP8Qvyxdvfk9bB3WjVuRlNWjekY5+2TB00h8f3nnHswR68fD1txx119ymT+s5g5a6l1G5Ukxkj5qGz0/H+x+NwcLDjyK6TFOYXsn/LEXR6CU5pNBhRKhWE1KhKRmoWZaXlGCoMkrOYiyOePh4kvEqU9ISs94Gdo57aDSKJuvuUKqGBjP5wGB+P+xRE+GHrN8waNd+2En0T9ZrX4UVUDBVlFVbzej9S4lNtZvYu7s6UFpdJ/Yv7z21yxq7uLjRt24jje06j0WkIqV6Fx/eeodNradO1FeeOXECr00pEOFGkeu0wKioMpCakEhjsz+voeHR2WrQ6LcVFJXy+Yj7Lv1hNVlo2ASH+1GlUi8y0TAaN68umn7fx4vErG569Ucv6iBYLd689xNHFHr2dnqKCYrz9vSjILaC0pBwPH3fqNq6Fs5sjm37aRq1Gkbx8/AqDwcjIKUN4cDOK0uJS+ozowYObUSS+TmL/je1UlFeSnpzByE4T+WjxdHoP705OZi7D2o2nstLAmacHUWvUrPp6HQHBfvQa2k26VlZ+xO9r9mCsNDJm+nBWL9nI7g37+e3kahAhOyOHA1uPkByfStVqQTx7GC01fy1Ss9zR2YHiohJMBhP9Rvfi8I7jODo5gACFuYUYTSZUKhV6Ox1FhcUEVPEjLSXDhu4JqOpHcWExA8f14/GdJ7x89pr6zepwar/kyPdmotLZaenYuy11GtfCy9cTF3dnDm4/iqOTIwe3HSG8VhjJ8anEv0rEwdGegrxCZHIZ1SJDKSstkzzILRaGvj+QgeP6YjaZmTN6IfdvPpIUcM0WQmoEc/PCHSLqhmOxiORbrVJzs/IIr12NirJyKioq2Xt169sOFcC7KRnVrWEnXt76diUjx4b/dclIEAR/YCvgBViAdaIoLv+rbdoAh4F461sHRFH88u8/8v86/mnzlyiK6aIoPrD+vxiIBnz/0fvV6rVUt2L9AXz8vJDJBC6fvk5k/QhkMhkJMUmcPnSeNt1aSSqg1jKMWqVkxKTBTJk/kaf3n6O30xFSoyo5mTmoNSqcXZ1QKBX0Gd6Dr2d9R1ZaFnEvE9i/5TC/r97D+x+Nxd7BjqZtG+FfxRe5XM6872YSUNWPXsO6odPrWLlrGRuOrMTL1xOj0cS4Hh+w9ZedWMxmriacokGLeihVSn7Z8wNjPxzOsLbjWDz7e35ZvI6D247i4CShfUwmk9S0E8DVw5Wy0jLJE8HTFZkgUFRQjMFaQvnjoiCyTnWePHhOZYWB+JhENv64lUYtJTXJ+JgEdHot1SJD8fRxx8vfk6AQfx7feSopIVssBIUFYqiolBiw9joJglhhoLKikpSEVEREFAo53n5e5GTmEvtSkhFXa5T0G9mTsR8OR2+vJzk+hfY929KlfwdmfzWNTn3asWq3dM7htaqxbPNiWnRqSlmJVDIyVhr4Zs4y/Kv64uTqSOKrJBRyGR8tns7HYxdRVlJOpz7tadSyPtM/ncSdq/e5feU+FosFtVpDbmYee69tRW+no7LSQGlxKSVFJTx/9IJrZ27ywSfvs+7gClw9XBAEAZ29nvKycuwc9IyYPBiNVi25zQHTh83lw2Ef0667tIJ+dOcJbp6ufL5yPu26t7IN/FdOX+f6uVsAfzKKv3b2JlfP3gAkZn3dprUIDPZHrVGx4YctnD1ykZdPX+Hh7cZXvy4ivFYY4bXCkMkE2vdoJWUKMoGTe8+gUqmoKK9k7pKZDJs0CIDwWqHk5xZgsVhQqZWIFhG1WkXPwV2Ij0mkTpNarF/2G9fO3cLH31viLQAqtZKQGlURZAKNWtXnyM6TPHsQTWCwPxN6TeXulQesXrKBrIwcLp26hiAIyKwoI0GQwAUNWtYjP7eQtOQMOvfvxPcLV/DNRz8wsuN7XD9/m4qySqKjYshOz+Hxnac4Ojtw7ewtq5lRbRq2rI9MLuP181g+/GwyfoG+XDt78x84YvznYZG93estwgTMFkWxOtAE+EAQhBp/Y7uroijWsb7e+WQA/0uayoIgBAFXgEhgFjAGKALuIX1R+f/V5/+eDOHx3ad8OPRjKf02W6SBzGyhx5AufLhoEuVlFcyb+Dn5uQVkWpVDJ8waxcHtx/AN9Ob+9UeoNSqb1rujswNFBcWIiAx9bwDXz90mJSEVmUygZv0IVu76nq9mLaVlx6bcvHAHiyiyeI2EHrlw7DIfjf0EhVLJuRdHsHeQCEon9p1h/bLNbDz6C9OGzEEURRJeJ3Mt4bRthfb0/nNWfLWGwGB/Bk/oz8ObUSyZ9xNBIf4kx6eh02vR6jQYKo2YzCZKi8uQCQJavVbyLbCYKS0u+5MZu2AlyaUkpBEUGkBAVT8unriKnb2estJyTCYTc7+dRdeBHcjJzOWDgbOpKKugvKxCMi1Jy6Z+87o8vvsUZ1cnNp9azQcDZpMYm0R47Wq8iIrB2c2JwvwiWxMxLCKY2BcJWEQLAlK5JTM9m+S4FAQBZHI536z9lML8Iuzs9Sydv5yIutVZtWcZu9bv47t5P1OjTjgvn8YQWa8Gzx+9pP+oXpw9cpGm7RpRVlLOpRNXrHaRjpKhu72eH7d9w+zRC7F3tMPZ1YmM1CymLZrE0vk/U1ZSRsNW9bh/7RHe/p6kJ2fQvlcbkmJTqBIWSL2mdfj12w0U5RfSf3RvfAN92LPpIPuubyM7I4cjO47jX8WP3sO7M7TtOCrLKzlw6/f/cC9aLBabFMQbO9O87AJ++WYdXr4eiCJMmT/Btn3b0O6ERYYSUbca21fvoUPPNjRp25AtK3dQUlxKRXkF4TXDePn4FSXFJYhIpjSlJWVE1qtO1J2nADbhQa1OS3jNUOwc7Lh16S5OLo5kpmXRc0hXXj59RWF+Eav3/8Svi9dZyz/upCakceTebvZtOczWVTsRLRYcXRwpyCugefsmXD1z0wZCcPdyozC/kM9WLuDTKV8DIqIF5HIZOnsdbbu25PaVu2i0Wjr0bIPZYmHnur2E16pG1J0nqDUqVu//mTMHzxMQ7I9/kC8fDJ6Ns4sTZaWS2ZIA9BzWlQXfz3mr5x/eXYZwYcfbZQgudf++prIgCIeBVaIonv3De22AOaIo9vg7D/Xvin96hUsQBDtgPzBDFMUiYDUQDNQB0oEf/pPPvScIwj1BEO5lZ2e/9f7cPF2p2SCCed/NZPPJXzl2fw8R9cJ59vAFHWr05smD58xdMoP4mATKSstxcLanUesGfL16EQ9uRKG316FSK+k2sBNjpg/n23Wfo9JIcM0da/dSaEUqdR3Qkai7T3l4+zHfrvucbgM7Y+9kj73VEDz2RTwR9aoz8aOxHLz1O/YOdkzuP5NVX6/FwckeV3cXtDoNvkG+FBeW8Ou+H/9kr5iVnk3CqyTGzxpFSPWqDBzXFx9/L+JiEgkKCeBCzDE69G6LSqNENIvIBAGTWZoEajaMYMKs0Xh4uQFIXsYCiBaRtOQMZDLJXD4+JpF23VvRoVdbajeuiVqtYu3STQxuOYYJPaeSnZHDgLF9WLL+c7IzcqjZIIKvfl1onUDKOLH3DEnxKXQd0JnaDSPR2+vYfm49I6cMQa6QdHHMFsmG8YP5ExGB549eUFpcit5eh95eT6+h3Zg/8QuWLVzBwklf4ejswOyvpvLwVhRrvtsIgoTL/2zFAqKjXmIymrh+/hYqtYqykjIuHLuMKIKTm7NUR5cJ+Ffxo7LCgJOrEwFV/fhi1ScMHNuHr2cuxVApEavcPd1QqpRkpWXTc2g3xk8fRXJcCqcPnMfZ1RG9nY4x00fQZ0QPW9apVCnY9LOkXdVtYCdAKrMt37n0T/egKIqkWu1YC/IKEUWRj8Z+woDmo/jps184ue8st6/c58HNR3/63MIfPkImF9i5bj/jZozi/LFL7P3tEKmJaeTl5OPs6kR01EtKS8tQqpTIZTLKyyRL0PhXiRLiCMnxDCCiTjgfL5nB/RsPadmpGa27NEer1zJ62lDs7HS07daSuJcJnD92hbKycsxmMwPG9GH+e5/Tc0hXGrWqR9WwIPKy87FYRK6ckTIJjVaNVq8hMy2Llp2bkZeZi1qrpnXXloycOgS5UkFE3eqcOniestIKFAo5k+aNZ/K88XQb0ImJs0ez/ex6Dt7aQXlZBYd3nuDbj35g7+ZDfLZ8HtVqhvDzju9QqpRUVFbi6Oz41s//uwpR+LsyBLc3Y5X19d5/9neti+O6wO2/8eumgiBECYJwUhCEiH/Eef1TUUaCICiRJoPfRVE8ACCKYuYffr8eOPa3PiuK4jpgHUgZwtvu0yfAm1lfTmVs9ylE1qtOblae1EybNZqFk77kxrnb9BnZHblczphpwygtLWN8jw+Y+fkU3L1cKbTW5q+cvk55WQWDxvYDUURnr0Or05CXnY+DkwPzv5/DkAkDWDL3J47tPsW36z7n429nABIPYkibsUxb9D6TPh5nOzadXotOr6VFh6a06CAR0dr3bE1wWBB1GtX847lz/thl5iz+0NZnSIxNJj0lk2oRIbyKjuOrmd9x5tBFKisqadiiHnevPZCMqxC5f/0hN8/fxmhdpedk5OLu6UZuVh4ymQxvP09eR8fh4u5C7+HdmT1qoY1vYDKaKcgzIwjgX8WPTT9tw7+KL8PfH8jju88Y3n4ChflFTJ4/3vagXjxxBW8/T0qKSnmvz3SatWuEg5M9nftK0hIp8amERYbg5OxAfm4hweFVSIpLkeQBRBEQMVmNWJLjUxnfYyqFhUXIZTK6DujI7Yv32LvpIB7e7sz88gM8vNy5eOIqcTEJaLRqfAO9GTC2LwkxiezbfJiM1Ey2rNqJs6sjwycNZlK/6RiNRmYvnsb3C5ajVCu5fOoaA8b25vju0xzfc5qcjBwqyiup2SCCT6cuZvK8CexYs5cda/diqDTg5unGl9O/Y87iaQyfNMhWAvLx9/oP9+C5o5dY8N4XfLvuMxZO+ooWHZsiWkT8qvhy+uA5ft37A03a/EfkTIdebQivFcqeTQdZ9/1GZDI5RoORGnXCiX0Rj2gRqawwIJfLsHOwx1BZSa+h3cjJyuXUgXOSfJEAGo0ae0c7nj2K5tXzOBAEKisq8fT3pHmHJhTmFxMXk8Cju09p0qYRM7+YwoFtR8nPKcDO0Y6XT17x9P4zHtyIYvWBnykuKOHbj5eRnpyJWqPCaDCh1qgQZAKPbj6WJmULJMemYDIYsbPXkfA6kZr1a+Do7MC0RRKPobS4lN7DuuPu5YarpwsXj19l3oRPkcnlBAT7cfvyPfqP7kVmeg6/LF6PX5APedl5f8qi/idDlL31sJPzNhnC31gc/zEeAIGiKJZYgTaHgNC/43DfKv5pE4IgMUk2AtGiKP74h/e9RVFMt/7YF3j6LveblpTOpH4zKCkqpqSwhE592+Hj703LTk1p270l+7ccJjk+BaVSQdXwKhzZeQKz2cyyT1YybsZIhk8axIsnMaxeslGqL5+7jslkRq9R4+buQov2Tbh1+R5yuQyfAG+CqwUREvFnNUZvfy/mfTeTlh2bEXX3KQe3HmXhD3P4Yes3tm3MVo/bzn3a/4dzMJvNPL3/HB9/L+o1rc3YrpPJyy1g/KxR7N98GIvZwqHfj9v4AFLT0WKr85cWl9n+loOzPaXFZWRn5iCXyQmvGWrFlcvJzshh3dLfaNyqPrcu3yMoJIDYF/G4ejjj4ORAwqskGxu7eYemHNh6lPKycvqP7s3qbzdSvU41mrZpiFYvmbiERYZw9tBFHt1+QlF+Ecf3nKFZ20aYjEZ+/vxXGrVuiGDV3I+PSeTQnZ0MbDFKYoNbLMz7biZms5kfP/0Fbz8vQqoHUZBdSH5uAW5erhy4+TtKlZIPh37MtbM36dC7LUs2fEGthpEkxibTbUAnXjyJwd3TjcAQfzYt386SeT+SY9XvKS+VlFB1Oh0Wi5ld6/cz8oOhvHwcw42Ld2jQvC7pKZkolUpqNojAbN6FoaISV09X8nPyiaxfHY1Ww5N7z/Dy9bBlg29CFEUuHLtCcHgVJs8bT8OW9Rn1wVCe3H9KRXklgcEBqDVqajeUJv+M1EyWfPwjH30zHd9AH66fv8Unk77CJ8AHUYSwmiFsPb2WW5fusm/zYa6duYGLuwvFhcXkZEomRb+v2YMoiji5OlGYX4hoEcnJzKVGnXDuXL6PWqPimzWfMnfCZ0RHvZQ0nrQaPv5uJrvW7WfOmAXo7fS4e7nh4u7MjjV7sFhEDu88Se3GNalRJxylUsHmU2tY/vlqtHotB7cdZcPRX7h16S77txwhNzsPi0XEaDIx8+upzB33GS8fx2A0mCnILaBlp2aIosi47lPIz8lHEAQcnB1w93ajeYcmTP9sMns3HeLIrpNMHzoXRxd7ykvLmP3VNAwG499FSntXIQpgeoej599aHP9pf3+YIERRPCEIwq+CILiJopjz7o7in1syag6MBNr9FcR0qSAITwRBeAy0BWa+y52+jo4jP7cARydHnke9ICwihA692hD3Mp6Te8+is9MQHfUCURRJjE3i7pX7aLRqvAO8aNmpKbNHLyAlPpWn959jMVv4Zs4PtO7SnNZdW+AV4M2RnSclbDYC8yZ8xuXT1xn23oA/HYNcLqf/6N64eDize8N+Th08Z5PPBlizdBMda/ShvKyCvJx8CvP/vFhQKBQcvruLDxZKmadcIScoOIDtv+7GJ9AbQZDgrW9W+xkpmYiiyOyvp9mgom+i+6DO+FfxRSaTYe8g1ZsTY5MxGIzM+HwKzx+94Pr5Wyxe+xnxrxJRa1TI5QpadWqGUqXk2/Wfs/vKZn5bvh3/qr6MnzWau1aJhbiX8aQkpnH+6GWunLouef3qtbh6uFC9TjglRSWcOXwBs8WCiEibri1Ijk/lRVQMnfu1Z+n8n9HZaVFr1EyeP5FB4/uRmpRB3Sa1qNUwgiunb3L76j1q1o/g9fNYZoyYh9FgpOeQroycMhiT0cT8iZ8zodc0xnadTN8mw3h89xmlpWVUrVaFviN6UFIkfe9N2zZizIfDGT9zJJUVFbh5ufLLnh/Y/usunj54Tkh4VZbvWIogCHj6euDs6kSPwV34Zd+P7L+xnUN3djJoXD+ePYzm249/5OqZ/9joTE/OYN7Ez7hw7DLjZozE0dmBDxZOZM2B5fhX8ePs4Qscur0DrV6yM83JyOXhrcdkZ0jPvJevBzUbRDBp7jimfzaZxaulXtSC974gKz2byfMmkJuVS2iNEBuSbOJHY5DJBPyCfACpnGM0mkh6nYxMJrDNavHZZ0R3XN2dAXj59BVffLiEp/efodPrCI0IZtHPH2M2mSkrK6f/6J7cu/aA4sISWlXpzM51exnX7QNO7j+Lk4sjHXu3ZdeGfdw4f5s2XZtLKqvBfiS8SmR0x/d5/TwWmVxGSWExlRWVLJryNZP7z0QulzFyylAat25AQV4hzdo0YvmOpdy99oAWnZrStltLIhvUICDYn7TkDDb+tI2WHf8JwnbWsMjEt3r9d/GfLY7/ahsv63YIgtAIaezOfYenA/wTMwRRFK/xJ78lW/xDlap0djoEAYwmE41bN6R5+yas+/43Nv60DYtowcHJAUOlkeLCUtZ9v5kmrRty+8o9/IN8mTvuU3Ky83h875nVr9YNEZGrZ25iMBgQAHtHeyorDchkAmnJ6ZJFIdLqMz0lk6rVgmzHsunn7Zzafw5vf0+cXP5SB71x/jYKhRyVWsmIDhPQ6jRsP7eB3Kw81i7dxHsfjcXN0xWQeiKH7uzEZDLx46JVXDlzHRAIrRFK9drhnDtyCYVCgd7Bjr2bD5EQm/Sn72P3hgOE1QhGJpPRpkcrykrKSE1Kp0btahzcdgSZTMaUBe9x+eRVWnRowuAJ/dm9YT871+9DqVKhVMi5dvYWd67cl3oeAd5kpkns5mbtmpCamMbgCf1p2qYB8977gl5Du6JUKdn2yy58g3xwcLDj9Yt4pn82hY/HLkKr07Dl1Bp++vxXrp6+Truebbh88iq5WXkMajkanV6DT6APY6ePQKPVcHLfGXoO7Yq7tyvnj15m5sj5rNq9jI6925KZmsWFY5dZ9skKAoL9SYpNRhAEbl64Q8yzWMxGExVl5VSrGUpAVT9JEqKwBLlCzvylc6jfrDZDJ/YnLiaR+UtnMbTNWJq3b0yVsECGtxtPZUUlVcICsW9tZwME1Glci80n1/xNjX6fAG/WHVpOWMR/zPRHTxtG8w5N8PTxsL0XWb8Gl2NP2n4ODq/KCms/omUnqaR4cv9ZigtLeBH1UgI3iKJN76cgr5ANy7bg4uFCoRX2KQgChkoDwyYPwtXdhYXvf0HcywQQwGgwMXLKELoO6sz4bpNx83IlKy2H+9cfcWj7cTJSs2jXozVN2zbGaDDz7FE0gkzG3s2HSU1Ko06jSDb9vA0PLzdys/NRKOTcvHSHgWP7oFar2bPpAG27teTQjuMoFAo8/TzQ6bUYK00U5BdSs2EkO9fvZfvZDUQcvcTLxzF8PWsp545cIjg8CEEm59Htx8hkMroN7MSpfWeZOngOv5349e0e/ncYb3oI7yjeLI6fCILwyPreAiAAQBTFNcAAYLIgCCagHBgi/gMQQf92TOUGzevSrntrzh6+QIMWdbFYLLh7uVGvaW1uXbqLyWhmyMQBrFmyAWdXJzLTsnFwsuPHrd9wbPcptv6yk/zcQvqO7IlWq2b4pEHkZOVxfM8pNFoNMc9iuXP5HjKZjAmzRnP1zE1Gd3mfmvUj2PvbQc69OMoXH36Lt58X/Ub1QiaXMWR8P/Ky8xnV5X1mfDaFdt1aUV5ewcJJX+Ib6MOw9wYCEP8qkcM7jtOpTzvbhPAmFAoFH387g1oNInh87xnRUS95cu8Znj4eZGfkUCUkkKi7T1AqlSgUcsrLrKY1IijUKtQaNfEvE3n28DlmswWZICMpPhWj0cT21TvJzZKAXpdPX6dqWBBmk4URk/sR/TiG5h2aIJPJsHO0Q5DJaNWlOfk5Bdg76Il/lciinz7m69mSG5jZZKZqWBABwf4kx6dQd2Bnftj6DW5ebpjNZkqKSjl39BJXz9xg1LRhpCakYTSYOLj9qARhLa9k3KxR/PrNeq6cvoFGqyY3K1cixQkSm/YNb8TT14OAYEkVdcr8iTg4SaqjuVl5WMwWq76OhKnfs+kgezYdRK2RvovV365n+ORB/L5mLx4+7ny/cAWJscnYOeopLS7Dy8+T0pIyHtyIok23ltw4f5uQ6sF889Eyvly1AIVCwYwR86gSGsCHn06W7rfm9ajb5G8jU0KqVyWkelXycwv4fc0eRk4ZQmlxKWu+28iMLz7Axc3Ztm3CqyTGdJvMV79+woEth3F0dpC8G6wCdvGvEpn+2WRKCkrY8stO6jauRbP2jfn589WUFZei1qoxVBo5sPUIIlBSXEqD5vV4/+Mx1GsmeTLbOdjh6u5GZN0aXDxx1Qpptic2Op6Pxy3CwdmBDUdXce3sTb6f/zOiReTRbQld1q57a3Zt3M/SjV/y02e/cOnENZp3bELdprU5uP0YVasFUVEu9bY8fTxQqpT0H9WLdtV64BPojaefB8UFRdLiRhTR2+t5cj8ai9nMkAn9cfdyY92yzdRqEIlPwH/s0fxPxdus/t8m/ovF8R+3WQWseic7/C/i325CMBqMEh5eFMlKz2HxrO85vOM4zq5OuHm6kJedz9FdJ2neoSm52Xk4uThSmF+IWqvG1cOVzNRseg/vRm5WLk/uPefZwxfEvoinML+QnRd/o2m7xji5ONA+vCc7L2yitLiUW5fuMmh8P8JrhUlCbkoFSpWCKmGBTAgbBUBxUQlevh44OjvQoVcbABZN+ZrAYDeatG0ISJPZpVcnbCWFv46D249xZMdxigqKSXiVhMViITsjB29/Lx7ff4aHtwdZ6dlWK0JXSovKQYBYq2ftk/tS5tNtQEdO7DvLlHkTWf/Db4TXqoa7txtHfj+Ozk5PbnYegyf2Y+svOzGbzCS+TqLbwI7cvxHFFx9+C8Csr6YSEOxPTlYek/rNoFrNUCLqhhMWGcqv364noIofw94fyMsnr+jTZBifr5iP3l5PSWExyXGpViP4Cjr2bsvF41dRqZRo9RqyyytZPHsZ2ek5hNSoSrcBnVj51Rrcvd3ZfHI104fPZdqQj/Dx92LBsjmSD7BMxuVTV7F3tMPTx50Js0axeeUO8nPy+XzlAj79YDGiKOLq4UJJcSnlpZJybEF+EZPmjadlxybs33pUMk4qKsNkMrHz0m8c2XGctt1bcfrAOb6b9zOf/jSX1IQ0Sooky0qlUolCqSQ9OYMF731JYGgAuy5u+hPn4K8jOuolW1buoFHL+hiNRs4evsiQiQNwcXNm7fe/Ub1WGAmvEiktLmXDD1t49fw17Xu2IT05g/vXH0mTQ0kZK76QvBEQIPZFAks3fcWJPWfITMtix8VNzBg2F7PZzK3U8+Rl59On8TDWfv8bfkE+NGnTiObtG5OVkUPv4d2Ji0lEpVLg4OzAPasnt6uHgqmD55D0OpmqYYGUlpZRVlJBveZ12Ll+L6II3879kdoNa3LpxFVO7DlDtcgQ3L3dKC0u5djDvXSt1R+tTkNJUSkWswVPX09W7FjKbz9vx8PHnQbN6/LgxiNGTB7M/s2HadW1BReOXyE7PYf+Y3pTtVoQg8b1fRfDwt8f7zZD+F8T/yt4CP9/4+/hIVw+dY3ZoxZKMgaVBhxdHLB3tMfTx53YF/GM/GAoN8/fJqCqL4X5xVw8cRWzWXLuGjllCM8eRqPWqPHwdmd8zw+wmC04uzlRq0EkV8/ewM3TFf8gX0qKSykrKeezFXMJDq/6N4/FaDCSnpJJQFU/23v3bzzip09/YcXOpZKD2X8T65ZtJiwyhDZdWjCxz4ckx6VQXlqOXC6jsKAYV3dnSopKqSivRKvT0KRtQ2QyGT6B3hzadgwnF0dSEtNAFGnarjF3rtxHo9NQXFhM7YaR5FglLDJSMtH8f+z9ZXQbWfb9D39KZGa2Y0wcjuMwMzMzdJiZmZmZmZmZwUHHTuzEFEPMzGwL6nkht2d6pruT7umB7/P/7bW0EpeqSlcqqc695+yzt74uZmYmGJoYMHHhaHavOUS7Hq1IikvhwpErGBsbUb5aOWzsrbl7+SHGpkaIorbDtErNSgT5hXDw2g5Wz9pIUVExc9dNJyo0moObj+PgbE/n/u2xtrNk65LdpCaloVKpeRx8k+iIWK6fvsWt8/foP7o3T++8QCqVUa6SKyOmDWFS31nIdeRcfn2Sjp69MbM0JSYijrbdW2LrYM3Ht/74fwjA0socpVLF3c9X6Fq7P5lpGSzZPo/lU9ZRrVZlmndswtalu0GEGvWro2+oR3RELF0HdGDf+iNMXjSGuk1rY2RiSG5OHgNbjMTe2Y7zz48S5PeVmg2q/2aBc+PC7Ty69owrb09jYKT/T897v/TFwdkOeyc70pLTtb4ShUVsXryTPsN74F65LO2r9aRWI0/cq5Rl9+qDNGvfCH0DfaIjYhBFbTDp0q89X3yDCAuOwMTMGAdnOyysLcjO0AoKblu2F4/aVahetyoZaVmMnDGEa6duU65SWRaMXYZGrdGq3pb4TxibGXHywQGUxUrmjlxKePA3khNSEBGp5FGRIL9gLKzNOXRzJ7YOthzfeZp964/g5OaImaUpDVrW49Cmo0xbMZHDW06wYvdCti3bg0wmY8iE/mxduhszC1MsrM35+MaPanWqEPk1CkEiISszm7UHltO4TX10dBREh8cw86cFOLs78+GlL1kZ2fQY0oUl2+b+0G//Z/wVfQjVPAzF6zd/zFO5rMu7/ydu97+KBi3rsXDLLMwtzJg2ZB5mFqZER8SSk5ldyljwfeOH9ytfug7oSJO2DXj1+B03zt7h3MHLKIuVaEQNji4OKHQUJMYmYWZpRnREDGqVmoSYRJzLOTF7zRQm959D7t8xev4Rx3ee4cCmY9zyucCrx2/Jzc6jXGU38nLzUJU0jGWmZ+Ht5UvrLs1/9WZz7dQtqtetSvP2jYmJiEUmk2JpY6FV/szKxdbBhuC0r+gZ6FGhSjmCP4eiq6uDvqE+BfmFlHF1wNrOCj19XT54+TJwbB9O7jnH8h0LWDNnM9VqVaZWoxqYmZtgZmnG7tUHsLKz4vDWk8R9i+f143cEfAxm1IyhjJs7kpAvoSydvAZBIlC1VmWq163KrlUHCP0SRoVq7sz4aQEVPSqQnZHN5H6zEQQBcysz9PR18X7hS1ZGFptPrGXG4HkkxCWRmZbJ2tmbKSwookOftty78khbGBfh/QsfWnVpztZTa/H3CaBVhS5UqOZO72HduXHuLveuPEJXT5eCvAIkEgnJianoG+qTlpxO90Ed8ahTlUat6hMW+I3Ht54iEQQUCgWiRkOTtvUxtTDTqsn2aoOTmyPzxyzDzPw8Ftbm7Lu6jWFTBvLp7Wd0dLVWob+H2aunMnv1VC4dvUZRUTGDSrqGQcv8mjpwDk3bNWLdoeVYWJsDkJGWyc1z9yhfpRzulcty3fsscoWc9JQMrp68Rcc+7Ti55xxfv4Qhk8sxtzTj8a3nFBcrQRQpKigiMy0LMwtT0lMySElKY+yc4exafYCQz6Hk5xeQFJ/EB69PNGxVl9u+F0mMT2bJhFUkxCZhYW3OqJlDWTJpNaGBEXz7GknFqu506N2Gih7l2bvuMACFBYUMbTuWnec34VLOCalMSkpSCpU8K9BtQAfKVylLZlommWlZLJ+ytjT9uHnRTrIytbpZlTwrsPP8JkzMjZk1bBHKomI0ag1zRixi+vKJDB7fjyWTVhMblUBY0Ddkchm2Zax5cc8L+GMB4a+AKIioZP/3J9P/iP/PBQTvlz6smr5R23Fa34OUpHRadmpKux6tWDJptdYVTwArG0tys3NZc2AZq0t09M8dvEwlzwoYmxjxLTQStwou6Orp8C00EiNjw1I9Ght7a8pWdOPOp0u/O5b2vVpjZGKIpa0FD649IScrhyETD3H17ZnSfa6fvs2uVQeImBXJwDG9S6mM+bn57F5ziN0XNuFcwhwaMKY3u1cfxLNeNRJ9g7SpCUFARMtE8qhXlfOHtCbmP2vOf/0SxqgZQykoKKLfiB5sWrQTOwcbug7syPkjV4iLisf3tR/6BnqYWpjQumsLoiNicXV3JiosBqlUgiBoFTa7D+7MszsviQ6LobiwmMy0TIxNjOk2sCM9h3YlP7eAm+fvoVDIePv0PZa2FhTkFVJcXMzXgDBysrQSB4e3HCcnK5eGLepibGaMWwUXGrasy8HNx0mOT6H74M6cKOkjmDdqKfZOduTn5iNIJAybMojyJdIarbs0Jy05nYObjzFz1STO7L9EdmY2e9Yc4sHVR8zbMINP7/05tuMUcrmME7vPMmftVNbM2sTedYfRqEUkEoHhHSewYPNMrZ6SR3lUGjXd6w7gaejt36U8Th8yH30DvdLOdIAH156Qn5dfquV/8chVsjNzOHBth9bH4e8Q+TWasbOH03tYd4BS+84Prz5Sq6En1naWxETEoizp0cjVaCgqKMLAUB+NWo2qZIJSXFTMzFWTWTB2BU3aNtTWe4wN0DfS5+3TD1hYm5Ecn4ptGRsCPgUR8y0OgNSkVG6eu8ezuy9L9auCv4RqU0kDO+FeuSwxEVrvaQQY0XECQydpWUJ6+nro6unQtU5/RI2Gnj91Q5AIFOQXAdCkXUPysvPIzsohPCiC/qN6UdmzIgCr9i5i7ewtdB/ShcNbTnB2/0Ve3H+FXCFHrVbjVM4Rj1pV+BYaRWJsEv8taIT/FxD+z0NVrEKj0RAe/I1WXZoR8jkM75c++Lz+REFeIS8evGbigtEMmzIIQRCIj04gNjKe8OBvDJs6mKsnb+DQ2I6M1CwSY9+jZ6CHnp4uHXq35dKxa6hVamIj4wgLiqBcpV9PFf2M+WOWY21nSb9Rvdh1YRO/lr7rO6IHOro6bF68E+eyjjiXdSQ0IJwqNSty6dhVqtaqhGt5FwB6Du3K7jUHtXleiYB75XLk5+YjkUgozC/kzZP3SCQSlMVKijJzqN1YayMZ8DGIV4/f8S3kGx51qzFp4WiWTVlLl34diPj6jSvHb2BqYUJsZDwv7r8iKjyGKiX8c983fphZmpGeksGoLpNIikvm3PNj7N9wBLlcxp2L98nNySM2MoEgv2AKC4pYvXcJMpmM1OQ03j33oWYDTwrzC/nw6qN2lRWbiIiIXKHA+6UPdy49IOBjEAqFHCtbS+wdbalepwpvn3/A1MKE6csn8DUgnHMHL7No/MpSobbiEiMfAUhNTue691mS4pKZ1G8WKpWKlTM2aIXf0Ppk5GbncfbAJbr074CljQUGRgakp2Rw+cQNgj6FIJFIePP8PVtPruPtM2+yMrIxMjGkX9NhtOrSnPHzRv7i2tmVsUHfUB+lUoX3Sx/qNq3F3itbmTtyCYNbj+JFxD1ePHhNVkY2I2doa0miKHLz3D1qN/Lkyskb+L3/wrApg35x3i1LdpGalIaVrSV2ZWxQKVUUFyspzC9EKpNQo2F1woMiKC4qJjUpjZSkNN4++8DMlZPZtGgHpuYmGBgZMHnRWBZPXE3dpnUoV9mVlw/ecHL3OQyNDFixW5tWfXH/FY1a1eP143eYWZrRvmdrLh+/zmffAOycbJm7bhruVcuxaNwKEAS8vXwJ9gtBI4oMmzSIFh2aYGFrwZunWpG6L75BmJgb8+L+K6QSCQqFDqKoldHetmwPIZ9DyUjL5OuXMJq2a0iN+h54e/lSUFBIcWExCzfOolZjTwa1Gk2rTk2ZsXzin7sR/IsQAfX/qyH8b+KP1BDSUzI4tOU4DZrXxa2SK30bD0WpVFLJowJffINwdHPA0toSuULGhAWjeHH/NbfO3cPS1hw9PT2KiopZuGkWV07eIDI0mvcvfJDJZajVaq2Coyiib6BHuUpuHL+//3fHsnv1QSxtLeg6oCOvH7+jWYdGvLj/iv0bjrL7wuZSJpEoioR8DsW9SlmWTlrD87tePAu/w+XjN6hR3wP3ymUBbQ759sUHSCQCl45eo3zVctRvXoej209jZmGKIBFKOe3GpkalXsAApubGZKZno6OrYMqScWxauBMDI31ys/OQSCWs2LWAI9tOkRCTiFqtYcL8UTy59ZyOfdtRo54HegZ69G8+nIYt67Lx6Co+vvVjXM/pVPQoT1FhEXK5DAdne7IyssnLyUOpVJKXk0/3wV3YtWo/Nep7IEi0zm0+Xh8RJBKq16mKsakRaSkZyOUykuKS6dy/AxU93Nm/4ahWcFBHgbW9NRmpGUxdNp5jO87w6tFbqterSmxkPHnZeYiiiEYj0r5nK7y9fImJiCt9b1VqVgIRIsOi2H1xM9MHzad5h8Y0btOA9fO2oquvlaV4dOMpCAIderVBR0+Hqydu0rlfOyK+RmFkYkiH3m1p1q4hxiUBJjQwHFNzE6xsLXl214vZwxex5cQamrRtSFhQBDERsbTo1FTrCFei/QPw5PYL5o5cwpCJ/Rk/bxTFhcX/VHN49fgd2RmZVPKsSP9mw6nduCYfvHwxMTNB31CPpLhkjM20n1sZJ3siw7RU41mrp7B9+V5q1PcgIiQSCyszZq6cTIBfMLtWHsDU3BhTc1Nmr5uKazln5o1eSmhgBO17tebGmTscu7uXFVPXERoUQd0mNXn33Ifew7sxf8PMUhXZReNXce/yQ+o1q433S1/0DHSxsrUEEaIiYpi9ZiqvHr2lsKAQ39d+lHG1p2YDT+KjEwER3RIG1Me3foiiSNlKbmhUGoxMDPGsV40j209h72hHQX4BbuVdCA/5xpOQXxUz+E38FTWEKp4G4rkHP6Ye4WHj/X+mhvD/hzHu92FuZcactdNo0q4hMpkUQSJgamFKZFg0G4+t4qdJAylftRyJcUmM7TGNQ1uOk5uTS2piOvl5+fh7f2FouzFcPXGTdy8+lKo4yuUyPOpUwcTMmFX7FlO5RkUy07N+dywTF46m38iePLn1nHmjl+LvHYBGrSE8KIKV0/+mfyMIAhU9yiOVSlm4eTaXX5/i+V0vtizZxZn9F0v3Wz9vG6f3nufUnvPYlrEh+HMoBXmFCAJU9qxAalIaK3cvom23lmSlZ9GsfSOMTA2pUM2dLSfWIpFKaN+jNbnZecxZNw07R1tMzIzxqF2F5VPXU9GjPIWFRbhVcOHCkavERsVhXJLy8nn9icL8Ar4GhDOw1Uh8Xn9CRGTM7GHo6OkQGxmv9aaOS0JZrGTF7kXUaFCdg5uOIpFKCPgUTGRoNHFRCYyYpp0tfwuNIi83n/rN63Dk9h6uvT/LiV1nWDN7C6EB4XQd0JHh04bw5PZzcnPyePPUm1eP3iBXyAj6pDXLUavVNGnbEIWugqunbqGnr8/ERWN5FHSDFbsXcejGLk4+PMDT0DtUqOqOsZkx0d/iuHn+HmkpGURHxJAcn1LiNaHDp/efeXbnJcZmRuiWSJVMWTwOZ7cytK7YleclVqqju04uvYYNW9Zl3cHl1G+uZYuVq+RGi05NS6/tz8EgLyefeaOW0qZbC0bPHIZcLvvVAvSBDUfYs/YwPq8+oVSqsLSxYN6GmaQmp1G9TlVsHWxITUynZv3qzFg5iZoNqqPQkaMsUrJ46xx8Xn2kSs1KREXEsmrmRk7tOY+RqREzV08hJSmNPWsPM6nfLPy8v5CXm8e3r1E0btOAyPBoQgLCaNCyLu9e+OBc1pFZq6eUyn1LpVLKVymLVCalTpOauLg7sePsRip7ViItJZ2Fm2YhlUp5/fgdwZ9DqdW4BsVFytKgbe9oh0yu4IOXL3r6etqmMxEatqpH98GdiQyPxsTUmCGT+pGVkY2BkT7Ldy38s7eCfxkaQfyhx38SghaOf/r4/6+tEMKDvzF72CI692/PxSNXSU3SWvnFl+RaBUFArVIhkUgxNDbA1sGGkC+h1G1Wm5zMbJLiU0lPSQegas1K1Gzoycnd59A30OP2x4sYmRrx/oUPk/vPZtzckfQd2aO0aem3UFxUzIdXH6nfXMsAunnuLk5lHale59dZDBqNhsYu7ajkUYHJi8fiWU8rdZCSmEqQ/1cUCjlTB8zBvWo5gv2/0nNIF/QN9Tm99wJuFV34+iWs9FxturVgztpp7Fi5jzsXHzBt6Xi2LNmNQleOZ73qvH/xoTR/rKuvy7z1M3h25wXP772ifa/WPLj6hJZdmiKXyfB6/A6ZTEJ+XiEGhvpkpGbSqksz7SzXxBAdHQX1m9fB2MSIhzeeEhYUgb2TLc/vvUKjVlNUWIyNvRVnnh6hV8PBZKZloaOr4HiJPIOljQVrZm2iaq3KTFowBht7a0KDwgkP/san9/48v/uKaUsn0KlfO2Ii4lgzaxMtOjelcev6nNp7nujwWHKycrjpc4E96w5xctdZVuxayKl9F5i5cjJ71x0iOiKWhJhE7J1staJtoohGrWHhpll0G9SJqPBoFk1YRWXPilw9cZNbPhewtrciJyuHg5uOM3hCf6ztLHn/wgdrOytc3J1+9Rr+Fj54+eJWwfV3GWbJ8SkUFxdjZWtJU9f2FBcrqeRRnqDPX7G2tSQ1OR2PWpWZuGgs80YtxdLGEgQI8f+KjYM1SXHJWNpYlEp2AKXCfxZWZuTm5LF85wJtQBMEsks65WUy7YSkXa/W3D5/jxYdm2JsZsyIThMI/BhE47YNif0WR/3mdZi0cAwyhZyPb/wQBIH3L30YMqEfA1uOJC5Kq0zj4u5c2iy4/ex6nt97xY0zd1iwaRaf3vkT8y2W6nWr4f3Sl68BYXjWrUbI5688DrnFywevKVvRFQdn+z/0+cJfs0Ko7GkgnnjyawrV/4w6Fh/+oyuEkvdX688c+0MrBEEQTv7Itv8LSIhJJCoihr3rDpOWnM6kRWOxsrEsaVISmblyMhbW5hiZGHD0zl46928PgPcLH75+CScrI6u0kBgXk0C1mtovhVqtAYl2tle/eR2O3NrNvvWHuXT0GvExiQzrOJ6woIjScXzw8mXLkt2IoohCR0HDlvVKZ4pd+nf41WCQk5VDVFg0fu8/c+TWLtJTM1g9a2Pp81a2ljRt25Bg/6+o1RrqN6tDr2FduXz8Bid3n8PKzpKYb3FIZVLqNq3FhiMr6NS3PfHRCTy+8QzPetVwKe/MtjPrcHQpw7tn3phZmCKVSugxuAvz1s+gZeemZGVkY2phQteBHRFFkUfXn/HwxjNOPz5M3xFasb+05HSatm/MoxvP+BoQxuq9i8nOzGHR+JVMHjAbuY4cEzMjHt14Rs2G1alcXVtQTIpPYUDzEVSvXRWJREIFjwqM7T6VnSv3s2TCavoM686afUsxtTClR/2BTB0wh+iIWLxf+JYwlkwxMjbUiqwpldRpXJOnd14ya9UUiouKyUjNZM3szRzadBx7RzsEiUDgp2DmjFhMk7YN8axbFWMzI5ITUpi8eCxnnxzG1NyElTM2cHjLCc4fukpaYhqtOjfnyhstXx60HeozVk7C2k6rIFu3aa0/HAwAajeuWRoMcrJz8fP+Zykva3sryrg4oKOrw/mXx7G0tSQ5MZXNJ1bjWd8DjVqD34cAlk5aTUZqJs5lHQgLCMPE3Ji87Dy2nlzLkdu72X1xM1tOrmX13sUs2TaX1XuX0KJjU/JzC9i8aCeOrmVKg4FUpp0gBfkFk5GaQY8hXTiy7STP774k8FMwGo1IXGQ8hsaG/DRpIEqlkruX7jOxrzadNHHBaIoKisnJyi1tJivI15oQla9alm3L9nDvyiPUajXR4VGEfP5KVFgMF45c4YtvIMVFxbx95o1SpebZXS/mj1leynL6b0AUtDWEH3n8F/BWEIQ6f+bAHy0q/yJZJgiCFPhTEei/DTMLU0xMjdE30kdHR8HpfReYMH8Udk62OLlpNexbdmrKgJYjePfMm8BPwdRtWgtlsYrw4AjMLc1o17MVx3eeISstmyWTVyOVSiksLGT19A1sOLoK0MoObD21lup1qpKckEpKfAq5OXml43j54A03z95h4oJRpeyRv0dxUTEqpQp9w7+lDFbP2syLe14UFytZsGkW206t/dX3eO/KI0wtTDi87YS2+gX0G9WD84euAuDgbM8Xn0Dcq5TlzP6L2ma0Pu2o36wWUwfOpd+onqXBKzsjB8/6Hrx68pb4mARO7D5DXm4+tg42RIfHYmhkgIGxAckJKdw5f49DW04wcvoQDm4+TiUPd8ICw0q9I+asnUaf4d25c/EBl45eA0AiCPQa0o15o5dgYW1OWnI6KUmpZD7PYuHmWRzYeJTiYiUzVk5iy6Jd6OrrcefSA2rU90BXT5eioiKmLZ3ArFWTCQ/6xuQBszm24wwajQbX8s58/hDAyV1nkUgkRHyNBODN03e4V3Fj3aEVjO4yCRMzI3Kycyjj6sDWpbsxNTdBpVSzccEOfpo8EGt7S1KSUrly8iapiancD7jGF99A9A31E2s7GQABAABJREFU+fjWj6KC4tLmwb8Sx3ac5uSus9z1v1JKRf1HKIuVpCWngQibFuykqMScyNHNgZhwba3kwbWnALTu0oKrp26SkpSKawUXTEyNqeRZgYK8AlpW6ELnvu0YNmUQxcVKXj1+qxXy0ynxyy6RKr947DrXTt+mXY9WPL3zEplcxpFbu3l88xnj5o5kVNfJ9GkylIJ8bapy7rrpeNStSve6A2jYqh6FBUUYmRhiYmZCVnoWCl0dEmOTtHai+ro0al2fI9tOY2puwk2f8yTGJTOq6yRysnKZMH8U9k52zBmxmJ5DuhD8OZRhHcZx7O6+v/yz/xFo/vOaej+KFsA4QRAigTx+1g0WRY/vHfi7KSNBEOaj1dTQA34m1AtAMVqbt/n/2rj/GvyRlBFoedNTB83DvZIbUeHR9B3eExGRJRNXc/D6ToxMDelZfxAyuZzc7Fx+mjwQhY6CQ1uOY2FljkqloknbhqSlpBP4Mbi01d/azpIjt/YQGhjO0klrWHtwGTb21oQHRZT6vgZ+CsbeyQ4TM2OKi4r/KRio1Wpe3HvFhaNXS81IfkZ4cAThIZEoi5SUreRGharlfpX2GOz/leKiYuaPWU5uTh65WbloNFqpBj0DXYxNjEhKSEHfQB+ZXEpOZi5nnx3BytaSVhW6IIoiHfu0JTc7D6+HrxkyYQDHd52h17BuXDlxg+FTBzN65k/o6Oqwbekezuy/wPBpQzi05TgetSuzdMcCbpy5w7lDl7GwMmPp9nnUblyTDfO24f/hC8kJKajVGipXr8jwaYP57BOIsqiI3sO7s3vVIb4GhuLvHYCOrg4mZkaYW5oxZcl4fN58QkdHwd51hzExM2bd4RVkZ2bTpmsL5o1aSqXqFTi6/RTm1mZEftX6QxsYGzBz5WSiwqJBgFN7ztNvZE/a9WjF4a0nEUURF3cnzuy/iEwuY9zcEaQmpHLx2DV09XTJKfHC/lkHSNSIjJ0znL3rDzN86mDev/AhJzOHa+/P/slv728jNSmNzx8CaN6xyW/SW+OiEwj6GEx2Vg5rZm2mbEVXvgaEoW+oT1FhEU3bNuTtM2+s7a2Ys3Y6t87f5e6lhxgaG1KQX8DOcxv59P4zhzYfZ8/FLRzfdYawwAhmrZ7C8qnr0KjV1GhQHZ9Xn3Bxd8LYxJCQL1qKsL6hHsVFSiYuGE3fET0IDYpg18r9hAZFkJWu7e6/8OIYy6euRyaV0HNYN6RSKUsmrqa4qFgbaCQCpmYmFOQXMmL6YK6cuEVSXBIOzvYodOSsObAUZZGSj+8+c2jLcdbsX0JqUhrblu4hMyMLjzpVOf4HA8JfkTKqWMNAPPT8x1JGTUz+4ykj51/bLopi1PeO/d0VgiiKa4G1giCs/V+5+f+ryMvJZ3S3ScRHJzJq+lAm95+F18O3NGvfCCc3Rwa3Gc2omT9haGJISoKWkXNq73msbC1p0rYhz+96IUgE7l9+pG0AQusxkJ2RTXxUAk/vvMTG3or83HxUShUXj15lx4p9XHp1ElsHa4Z3nEDnfu1ZvHXOr64MPvsEMmfkEvqN7EmLjk1/8VzZim6UrejG26feDGkzmi0n19KkTYN/OkdFj/L4vP5EUnwyvYd1o2xFV7Ys3o2JhTFJscnk5eQjlUkpW8GFYVMGkZebT7lKbpzcc07rXCYI3L54H2MTI5zdnXh27yWiKPLy/ms0ag0Prj7mwdXH3PhwHmNTIwaN70e5Sq6lejY7V+6n74geXDp6Dc96HozvPYOtp9Zx7tBlnMs6suPcRqYNnMfHd340CqjP9mVacbJT+y4ik0lIT83ErYILaSkZqFRqgj+HMqn/LCQSSanLWFZmNhvnb+PSq5Pk5+YTGxWPla0FXQd2pEqNSiyfuo5K1cpTsXoF1szciCARUCnVrD+8HBNTY66duc3bZ964VylLv1E9qdOkJvcuP+LaqdtEhUXTsGVdgvy/IggCXfq3597VxyiLlXQd0IHgz1+xd7KjU5+25Ofk0+ffJJ9gaWNRWnz+NYiiSP9mw2nUuh4zVkzC3tmO1OQ0egzuzLXTt+k9vDvXT9+mTuOa+Lz6yKS+M5m6bAKpSWl4v/TF3NIMtwouzBmxBI1aQ5BfMO+efUAURVKTUiksKGT+hhn0Htade1ceMn/0ckzMjKnfog5ffIOxK2NNlRqV8H3jR0JMIldO3qT7oE5oNBoyM7KQy+UUFSkJCwxn0qKxSCUS5o5cglQqxcTMmPSUDKztrLnodQzvFz7MHr4YEW3wFUU1ESFxjOsxjTKuDmw5sYZ3z70JDQhn1+oDuFdyY9Ssn0p1vv7j+B+WrhBFMUoQhMaAuyiKRwVBsAJ+v5BZgh9KGYmiOF8QBDO0hgy6f7f9xZ8Z8H8Tvm/9+PolnDpNajC+93SWbJvH7jUHCPgYjJWtlm6ak5nD5VcnGddzGoGfQlCr1KhVKhBFzCxMyc7KQZBKqFqrEp99AqlWuypOLg7k5eWxeclOxs0eUTpjNLMwxdzSrFRieuPRlZQroYn+GjxqV2H7mfXUauiJjq4OKpUKmeyXl6lKrUpMXDAaz7p/qzPk52pdsuQKOYGfghnbYyrterSmWbtGTB4wB41ag66ONgAJAtRvXgdvL19ePnzDws2zyMvJp1WX5iCKZGZkc2LXWSrXrMTwKYOIi4rn+V0vajb0LKXZej18w47le3ly5wWGRga8eviGOk1r0rV/R84cuMSyKWtL9ezNLE2Ji4xDJpPSbXBnvB68ITkxBUQ4uPEoHXq3ISYiloCPwXQb2AHnck5UrVWFcT2noVFrcHC2Jy4qHgEYOKYP5w9fxsDQgIy0LNpW6U7jNg0J+RxKeFAEG4+tonGJDlVlz4pU8ihPXHQ8xYXFVK5RkcrVKzJ5wGwyUjMRBIGo0GimDJiDRBCYsnQ8b56+ByDmW5xWSG/qYE7sPldaXzp74CL6hnqcf3aM3o0Gk5yQSqe+7f7aL+mvID83H5lChrJIVco8EgSBWaunYGVrQZ/GQzGzNCUzPYuP7z9jaGLA9VO3qNusllbG/GMIT+++ZOeKvSzYNIuyFV2pUqMSXWr2RaVSU61WZXavOUTDlvWwtrekQYu6eNSpyrZle2ndtQUFeQUA5OXm8/apN8OmDi7xfn5D5NcojEyMGDFtCOUqu1K7cU0MjQ1o1Ko+sZFxFOQXkpyQwomdZ9HR0Xo8l63oiqWNJWGB4QzvMIG4qHg0GlHrnSERiItOBNASFuQKkuJTCPoUzNvn3jiXcyIqIpZ+I3v+V7wQoKQP4X80ZSQIwlKgNlABOArIgVNoVVV//9gfYRkJgjAKmAqUAT6hNYJ+I4piyz896r8QfyRlJIoi4cHfCPkcypJJq5m/fga3L97n0/vPOLqWoWm7hpzdf4mGreuxYOMslk1azYdXn2jXsxVPb79AV0+XpTvnM3vYIgwM9fGoUwVbBxse3XxGcZG2OWjtwaU0bt3gN0XofhQf3/oxofdM9lza/JsqmT+jc80+lK3oyvYzGyjIL+TAxqOc2nMelUpFlwEdeXTjKZbWFsR8i8XAUB87JzvadGvOoc0nGDy+HxeOXKXnkM7cPHePrIwsDI0Myc3No2wFF2QyGWefaXn/a2dv5slt7TxArVJz/cNZutYeQFa6dkb4IvIuA1uOJPJrNM07NMbr0VukMgnFhUpkChkDRvfm9L4LDBzTG28vX5ITUrjpc4HLx66zddkeBASsbC2wc7TFo05VUhJTeX7Xi8KCIjQaDXPWTiUlIQ1BojVvT4xNYvLisXx864/fe3/GzR2JhZU5ch05c4YvIeRLKPHRCRibGSEgkJebj4GRAcamRqw7uJzkhGQWT1iFjq4OlapXQCqTYudow6d3n3FyK0N6cgZyHTmd+rZj6aQ1mJgZY2ljQcNW9Tm+4zSjZv3EgNG9MTU3QRAECvILETWaX9R+/gx+/l0KgoBKpaJ1xa5YWJmRlpLBw6AbyOXaSULPBoP49vXvMgECIGq74N8+8yYzLYuZqybTe1h3EmIS6N14KKJG5OSDA1TwcGfL4l0E+38lyC+Elp2aMn3FpNL+l8vHr7Nm9mYatapHQX4hX3wCMTY1xqNOVXoP68bWpbtwr1yWqLBYMtIzycvJo7iwmIL8QqQyKV6R91Gr1KSlZtC74WAsrS3wbOBBWGAEGo0GC2tzbB2siQyN5tO7zxgYGaDRaFi+awGf3vlz7/IjLG0sCA0Ix9jUkOzMXCQSCaYWJriWd6ZTn3ac2HWWNt1b/lNT4O/hr0gZla9pIO569WN9CO30/7N9CCUS2jUAX1EUa5Rs8/+RGsKPFpWnAnWAt6IothAEoSKw/E+O978KQRAoV8kNcyszRk4bwvr52+gxuDMW1ha8efqOfiN74f3Sl1cP3zKkzWhsy9hw+vEhhrYbi4GRPi07NUNfX2t1mZOVS2XPSqQkpZKdmcO4OSNwLe+CRCqhuXtHjt3dR6XqFf70WO0d7WjZuSkOTt+n1g0a358yzlqvXB1dBRPmj6KosIhrp25x6/xdRI1IbGQcBob6TFk6jqLCInYs34dKpeblg9cYmRhy/+pjsjKzqdWoBrUbeuL1+B0hn7/SqnNzbpy9y8pp6ynjak/7nq0xtTDlyLYTRIXHUrOBB+9f+DBi2hB0dXW55HWSi0euUpBfSNmKbpRxtWfH8n3M3zSThi3qYmNnxcaF2zEwMkAikTBr2CIy07PoPaw7l49fJyk+pZQO/PDaE5QqFVKJtCSVAAF+wXi/8EFEZMaKSZSr5Ma30Eg++wTx7vkHNszfxk+TB/H8nhc1GnhgZGJIYX4hyYmp6OgqqFGvGhbWFgxpMxoEMDI2pDC/iFeP39KgZT2e331FckIKCoWCLz4BlKvkRma6ll1WrVYV+ozoTrmKblSuXh4HZ3vaVenOqn2Ladu9FRP7zCAnK5eLXicAeHbXC11dnR8uOqcmpdG70RCs7ay0EtM3diKVShk4tg+Gxobk5eSVBgOAweP78ejmc/T0dZDKpESGRhMWGIH/+y9MXDCaB9efsG3pHnas3IeAdgXq7x3ATx3Gcvn1aeasncbze17MGraIpu0b/0JWvVHr+pRxseflgzc4ujpQrVYV0lMzsLG3Ys3sTSREJ9JvZC8KC4opLCikML8QAyMDADzre3Dn0gPWzNrMtlPrkMpkxMckkJKUVkIVFQkNCKd5+8ZcO3UbBKjfog4W1ubMG7mUes1rlyre2jnZklCyYqjXvDYf3/gR5BcCIpiYm/wpNte/DOF/uqhcLIqiKAjaJghBEAx+9MAfXSF4i6JYpyTy1BNFsUgQhE+iKHr+2RH/lfijReULR67w6MYzeg/rhu8bP3r+1JVpA+dhYmaMIMDXgHBEjYiljTm6erooi1UMGt+XIL8Q7lx8gFwho3bjmrx96o1hCb8+PTWDCfNHEhb0jUmLxnJs+ykmLRpT2rn6M2Ij47CwtkBPX/c3RvevobCgiM41+9B9cGdunr2LVCYlISax9HmJRODw7T08uvGMi0euYmJmTGpSGu6V3UhLzSA9OYOKHu7I5HJ2X9jErGEL8Xv/BZVKjUwmQ6lUUrl6RdLTMmjQrDY3zt1DpVSho6vDoq2zObDhKDvObmDVjI2lctrH7x/gZ7qTSzknosJiOLztBIPG9aN8lbIMbTdWK9Amk6Kjp4OjiwNZmTmkJaeVyE9ojY36j+yJz+tPpVRMQSJg72hL1ZqV8XnjR25WDpMXj2Pr0t2Ur1qOilXdadqhMYvHr6KwoJA+w7tjZGLIgU3HcK9clvSUDOQKOc3aNeT84avIdeQMmzyQAxuPYWJmTEF+YamXtEQqQSbTdqSPmzuCqLAYev3UlVUzNlKzYXVGThuKjYM1T24/Jz+3gM79tHTlXg0Go2+kz8kHB371ej259ZwN87dx4v4Bdq0+QFRYNDYO1lhYmZeIy/30w9d+2qB5RIVH4+hWhozUTDJSM2jUqh7Xz9yhjKsDsd/i2Xd1G5P7zSY3O5eKHuXR09fFuZwz9688RK3WYGljwU0fbc/GmO5T6DOiO/vXH2X6iokkxidjZGSAobEhj289IyI4EgcnO9LTMtl7eQv71h3hwbUnIGh7Flp1aY6hkQHDpg5m58p9eNbzwNbBhqPbT1KQX1iiqqohu0Ty3LmsU+kK9u+L+ZbWFmSkZ9K1fwde3H9NdlYOGrUapVKFnp4er6If/KHU0V+xQnCvZSBue/1jaqeddd//p1cIs9Cm99sAa4ERwFlRFHd879gfXSHECoJgitbY+aEgCBlA/J8a7f8AEqIT+eD1kciwaGRSKRPmjy5pjCpCrpDjUbsKcdEJJMenAFqaZud+7QgNDEcURVRKNW+feaPRaMjPzUdZrERA0PojfArm9L4LWlaK5JdVp8KCIno3HkrXAR1ZsHHmv+W9KXTkNGvfmDsXH6BUqsjPy9cqQ5Z4LRgaG3Lu4CUe3XhGhSruTFk6js1LdtLrp24kx6fi9fgtdZrUQiIIfHr3mcjQaGwdbSkqKKRx6wa8fvKeshVdME0xoc+InqhUaoL8Q6jiWQljU2PioxNYPXMTIiKiCCq1igEthqPRaECEOk1qkpKYSkpiGi/uvWLsnBGljXKCRMDF3ZnAj8F41vegML+Q4qJMAIoKizhz8CKFJeJolrYW5GXnEReVgKmZCVVrVESQCJSvUo4GLeoQH52Ipa0lji4O1KhfjTIuDiTEJGJs6o6oEfn6JYzKnhWo1bAGZw9cRBRFiouKObr9NABZGdkodBRY2Vmio6tDXFQ8ZSu5MWP5BB7fek7Mt1htWkcQGD51cKkwXctOzfj0/jNHtp1k+NTBHLq1C6n0t6uPljYWuJZ3Qc9Al4oe5TEw0mfuuj/uGtuv6TAEqUBibDJLt89n+uC5uFZwpUGr+vi+8aewoJD2vVqzeuZGnNzKUFhYRFR4DPWa1ebZXa3Pc0FBIU5uZfB9/YnFE1ZhbGrExSPXOHpnDwEfgzi95zxDJw1gzOzhVK1ZiVUzN+Li7oS5tRm9G2m7yw9e34G1vRUyuQxBEDi6/TRHtp7k8c3nPL75nCET+xMeHIlarS6tS+jo6WilLUokNpRK7SSgbtNaKJUqNh1dydmDl/gWEoVYMrFQFqswszRlzf6l/x1PZf53awiiKG4SBKENkI22jrBEFMWHP3LsH+5UFgShGWAC3BVFUflHB/vvwB9dIQBcOXGdswcvs2rfEnYs28ObZ97YOtiQFJdEn+E9qFqrMkVFRYgakcsnblJUUIS9oy3+H76Qn5uPVCZDWawsZb4odBV41q3Gp/efUSlVSASB2Wum0XVgh9IbSkF+IYEfg6laq/IvrDS/h+f3vNi+bC+Hbu36hXPWb2F8r+kkxSVRpWZlHt54ioGBPjYO1oyZPZwN87eSn1uARCqh7/AenNx7nnKVXPGoU5XAT8HUb1aH5/df0WNQFzYt3oFMJsPcyhQQmL1mCo1bNyAnK4f+zYZTWFBE9bpViQyLJi8nnzFzhnNy11lysnNRFisxMjZk4Ng+fPkUzP0rj0oMY2QMmzwQqUzKvnWHGTyhP1dO3EBZrNTm30WRhq3qsf7wCu5eesi+9YdxdC1D7Lc40tMyaNO1BRWqufPoxjNCPodiamGCvoEeKYlpKJXKko7xS6hUKgI/hRAR8o2aDT0Z1XkSxUXFlK9aDmWxkoy0TPJzC2jStgFeD99St0lN3pY43dVtUhMreyuun76NkbEBRiZGJCem0rRdQwI/hoAAa/YtoVrtv+WQr568yb71R7jw8ji71xzk3uWHPA6++btmOH8Fzh68xMUjVzEyMSLILwSNWk3XAR1JT83A940fMpmMYVMGERkaxZLt81gycTW1G9egSduGzBu1lDGzhzNz6AJsHW2JDo9BKpUyZdFYbl96wOAJ/Vg0biUDx/YhyD+Ej2/8MTDSZ9qyCXTp34FP7/wZ020KdZrWIsQ/lA592nDz3D0QReRyGQ1b1+fupYf0Ht6NnMxcpDIJz++9JjMt85dvQgB9fT30DPS0ZjkaDR16t+HFvVfMWjMV75c+3DhzBys7S3Kzchk8oR/fQqMZM2sYT249p2ZDT2o3qvHDn9lfsUIoV8tQ3PT2x1YIPRT/WT8EQRDWi6I493vbfg1/mDgliuJzURRvAOF/9Ng/AkEQ2guCECIIQpggCPP+6vO7VXSjsKCI7Uv3YGJmCiJIpRLcKrhy4chVFk9YRU5GDnm5+QT7hRAZGoW3lzZvvebAUkBEKtUKsIkl2vPJCSl0H9QZAVixZxEbFmzj3uVHACwct4KpA+fQdWDHPxQMQCt7bGBsgFQq/aH9NRoN2Vm5jJr5E1U8K9KqSzMMDPVYOHY5RQXFOJdzQkdHgZGJIbp6CgI/hvDumTfWtlaYWZphYWXGyb3aZq46TWpibGqMXC5n3ZwthHwORRAkKHQV5OXm8e6FDwev7wSgqKCQOk1rYe9oS252HvbOdgwa3w/vFz4YGOpz+vEhJi0czYFNxygoKKJBy3paB69nR7j2/iyVa2i7laPDYxjXcypr52zGrYILSfHJZKRlMnXJOL6FRnH7wn2atm3IuHkjOP/8KKKonVVq1BqcyjrSp/FQOnn2ZubQBRzfeYZNC3egUasRRRFHVwfsnOwwMjGkuKiYRzeeUVRYREpyGsMmD6RNt5b4eX/h3uWHIEJBQREOLnY0blOfB1efoFJpWT4KHcUvPvMyLg5Uql4BHV0d5qydyu2PF381GAR8DGbe6KWls+Pfw9Htpxjf6/dXC1Y2FtiWsWHwhH7Y2Ftj62hLuSrlWHtgGTYONmRnZnN6/wX8vL9w9/JDfF5/YtfqA4zuNpmeQ7tSq6EnDVvVw9HFHh1dBTK5lBN7zrJw8yzioxK0xeFHbwj8FIKuvg5uFVywtrdGqVTh8+oTY+eOwKmsE3qGenQd2BEXdycEQcDawYb6zepw4v5+Lh65xt1LD3j/whc7Rxsc3RwArRRKperlEQSBwoJCdHR1UCqVdO7Xnoy0TKQyCVFh0dw8excRUavSW1TM4a0n8Xrwmu3L93DmwCXuX3n0Q7+LvxLaFYLwQ4/vQRAER0EQngqCECQIQoAgCFN/ZR9BEIQdJfdDf0EQav7OKdv8yrYOP/K+/rSWkSAIMaIo/mkRpe+cWwp8RfvGYgFvYIAoioG/tv8fXSFEhESSEJvIhcNXefngdalkhCAROPf0CPPHLic0MBxbBxuUxUqyM3MYOmkAx3acRqGQo1KpGT5tMMe2n0ZZrMTMyoz87DzWHFhK9brVOH/4Csd3nmbg2L5UrVWZlp2aEh4cQX5uAWkpGZSvUhZ7J7t/+XP6R2xetJP8vHyad2zKgQ1H2XN5C99CIlk3byuiRiQyLJruAzsxbt5IRnefTFF+Ef1G9eLQluPo6etSVFhMhWruBPgGUZBfiIW1OXPXTcPEzJgZQxdQXKSkfc9WJMUlk5meRdVaVTh/6DJObmW0dpNzhuNWwRVTc2M++wSyedFOJi4cQ15uPi07NSEs6BvValXm5J5znD98BT09XXT0dDA1M0EilRAZGo2phQkqpap0xWBhbU5mehZSmZTLXid5cOMJfu++lNJDTc1NSE1Oo2v/9ty59IhRM4ZyZNspWnZuQkpCGvM3zECuo2D78j28uPeKiQvHcGzHaRBBoSsnOTEVXV0d+o3qxcndZ9FotH7MBkYG/DR5ICd2nUGukJORlgmiVmJ8waaZPL75DJVSTWXPCqV+FD+Cm+fusnHBdi55nSyVvfgtHN1+ivcvfNh7eet3z/vpnT8bF+zAxNyYuo1r0bZnK6YNmktkaBRKpQqFQlFiAZqHoYkBBXmFGBlr6wFTlo7jyLZTjJw+lF2r96NSqlh/eAU+rz7x4Npj1h5axvieM9DRVdCoVX3OHryEIGj7YgyNDXB1d+bxrefo6uni5ObA22cfkEi0TXwiMGBMLyJCovB+6cOwKYM4uOk4ppamZKVn4eBsj5NbGSJCvtFtYGcuHr1KWnI6uvq6aNRq1Go1tRrW4LNPAO5VyxHiH8q0pePZufoAji4O7LqwGVNz4x+eLMFfs0Jwq20ornn3+8y/nzFA9vp3X08QBDvAThRFX0EQjAAfoPvf3+8EQegITAY6AvWA7aIo1vuH84wHJgBu/HLCbgS8EkVx8PfG+q+0Vvw7VfHqAmGiKEaIolgMnAO6/RUnjgqPYUSnCUwdMKdUDsDRzQFdfR1UShVbluzGwNCALv3aY1DiriWTSfF948eQif0pLlZiZWtBux6tGDt3BIIgkJ+Tx66Lm4kMi2b2iEW8f/GBNt1aEBHyrdSvt2xFN9yrlGPuyCUc2Xbqd8f4wcuXMd2nlHrz/ijioxN4cvsl5SuX5fj9fSyZuIpn914RERLJt69RdOzdhrnrp2NiZkyXfh2Ii0rg5cPXeNSuinvlsmRlZBEZGkVRYVGpnHF+XgGF+UUoi5VUrObOywdviI9NIiszh9ycPGrUr0ab7i1ZtHkWN87eYWLfmaybt63EglIf3zefOLjxKIe3nmL+6GVM6DMDr4dvkEolFBUV07F3W23KKTcfQSKgq6vL+RfHUKnUOJdzwt7RFo1GQ/U6VRndfQpbw/J5Yu0OgrarWyLV3njKuJShY+82vHz4huLiYlp0asbBGztxq+jKjTO3eXzzOU5lHXl+zwvP+h506NOG/Vd3YGltwaKtc7C2tUSQaFc+2vedz9WTN8nLzSc9JYOa9aujq6fD5ePXWTl9A/PHLGfp5DXsXnOw9PNfPGEVp/ae/50rpNWpeh5+97vBAGD41MG/GQxUKhWT+8/WFnGBe5cfERUeTUFeIXl52qbInzvaFToKREQ0Gg02DlZMWTIOuzI2IAjk5uZxcs95Yr/Fkp+Xj7JYhXvlskwfPI9qtSpz9M5eQr+EExUeTfmq7lSpWYlKnuUxMDRg/cFlbDq2mqlLx+NW3oWKHuXp1LcdO85toFYjT61XiIEukV+jeff8A536tMPfW0s0yMvOw6NOVeRyKXm5eZhamLF/wxGKCouwsDajRccmtOvRCl09PUKDwikuLOazdwAVqrpzYNMx8rLzCPb/ir/3lz8UDP46CKiR/NDjexBFMUEURd+S/+cAQYDDP+zWDTghavEWMC0JJH+PM0AX4EbJvz8/av1IMIDvFJUFQZjxW0/xg51vfxIOQMzf/R2LNir+bQCCMAYYA+Dk9OMztLycPBQ6CgyMDMnLzWPcnBFcP3ObgrxCAMJDvpGamEp+bj5WtpaEB3+jsKAQf+8vVK9TFblcRn5eIYNajqRdzzaIooaiomK8X/pwYOMxTC1MMDI2ZOe5TRQXFZOWks6TWy+wsDHHs241jt/bh56BHqf3XaD3sG6/2q2ckZZJfHRCCcPl+4yxgvxCFoxZTt2mtQj8FEx+XgEajYa4yAQqV6+IjZ01aSnp9Bneg/TUDJZNWoO9sz0SqYSgTyFY2lhw9tlRxvWcSmF+ES07NePRzWcs2zGfes20E5uX3+6TFJfM8E4T6DOsO8/ve/Hm8Vus7Ky0pvBNaxHk9xWZXEZ6Sgb9mw0rsQEVEEW4f+VhqdexvoEeCh0FRQXFhAZqJzJJ8ckICGRlZNKlVj+kUikajYaAT8F06NUGv/efSUtOx75uDfSNDVnQqybTh8wnKS6F2o1rcuv8PYqKikmOT6F5hyY0bdewNKilpWRQ0aM8GWmZRIRElhSD4eH1p2RlZFOQV8iWpbvR19ejZqPqvLz/hn4je+L7xo+05DSUogpbR1tiI+Owd7ansKCQo7e13dUOLn+jBMdFJ2Bk8v2fxV9RBNWoNcRFxfP5QwC3L9xHoaNApVRToZo7laqXZ/vyPZRxdcDY1JiGLepx69xd7J3tmLdhBhWqutN9UOfS704Hj5541KnGxSPXMDI2JCk+hYzUTAI+BbN3/WGW7ZzPoRu7sHO0pUe9AbTo3IykuBSmDJiLvqEeey5pU4m1GnliV8YWAyN9XMo5l4hBZvPlYxDH7u5l+/K9vH/hg0JHgUJHawUaFR6NgYE+RiaGaDQaVCo1xrq63Lv8iKbtGnLiwX7uXnqgbc4UtMXk8KAITC1McCpbhoL8AkRR/I8Xln9OGf0gLAVB+PsUxgFRFH+VdiYIggvaHoJ3//DUr90THYCE0jGJYhaQJQjCIiCxhA3aHPAQBOGEKIqZ3xvo97SMlv7ewaIo/lt6EQRB6AO0E0VxVMnfQ4C6oihO/rX9/2jKSFmspFnZDhgYGZCRmolGo6FTv3a8fvQOEZGs9CxadW1O7Lc49Az0+fjGDwcXO9JTMlEWa0XnQMDG3orkxFREUcTE1Jim7Rsxcf7of5r9tffoiUs5J/Zd2QbA7Qv3WTZlLUdu7cbIxIgyrvb/1I0M2lrAsslradu9JY1/RaLiZ2SkZdK3yU9MXDCadj1asXr2JgaP60dFj/IAJMYlsXzKOgyMDCguKubd8w/YlrGheYcm3Lv8kIHj+qJRqxk8oT+dPHtj72TLsbv7uHflEX7vP1OzgSfvX/qwYONMBEHg7TNvFo5bgVwhx7OeB1K5FK8Hr8nJzEWQCLTr3oq7lx+CAD2HdEWhkKPQ1WH41EFcO32L2Mg4zC3NEQQ4tfcCVrYWNGvXiE/vv+Dv/QWFjoIu/dvjXrkcyQnJvH78nhoNq1O3cU32bTiCSqVix5kNPLvrxdFtpzh8ezezRyxCR0eHxm0aMHL6EDp49KSwoAg9PV1MLU1p1Ko+R3ecAlF7QzY2NcLW3lrb4yCXkpqYxugZP7Fl6W50dHW0TWZ5BTTv2Jjo8FjCgiLo0r89i7fN/dVr9d/C45vPWT1zI5MWj2Xt7M3oG+jRfWAn7l55RFGJXlCthp50H9yZOSMWU66yG6ZmxsgUcooLi5m/cSZjuk1h5Iyh7FlzCLVazaVXJ7B1sMHr0RtmDVvE2DnD6dirLeN7T8e5nDM9h3SijGsZnt31wv/9Z6IjYvn2NQodXQUIAjKZjLycPGasmIiegR4ajQa5XMH+jYdJT81EVawCRASJBF09HVbtXYJcIWf64HmoVWqad2zMp3efsbQ2RyaTEeT/FYlE0LbYa4ldyOQyVEoVarWaAWP7MHv1P6XdfxN/RcrItbaRuPT9j+l7Dpc+/6HXEwTBEHgOrBZF8co/PHcbWCuKolfJ34+BOaIo+vzKeT6h7VR2Ae6jXTFUEEWx4/fG8D0to/9W81ks8Pf1iTL8hTRXuULO2gPLMLc2Y8aQBaQmpXH30kMGjetLsN9XPrz6yMPrT7GyscS1vBGiKBIXmYBEKkHfQJ+eY7twcs85yrg40GNoVxJjE7l94QFffAKxKpE//nucuH8APf2/rQQ69G5DZc+KCIJAnyZDmbFiEgPG9P6n45TFSt4998beye53A4KZhSkPA69zaMtx7l55yLM7L6nbpDYVPcoT8DGY4ztP8+75B4QSeW5DI31iI+P47POFqjUr8ezOC8KCIoiNiiMrIwt7Jzv6Nx9Ofl4BYoko3rM7Lwn2C8GzvofW7vD0Os4fusKLB6+pXL0C1nZWjJ09HN83/ty78hCJVMLEBaPZt/4I5Sq7cfzuPuQKOQG+wTy59Yx2PVrz4Npj+o/prdWOMjJg2eQ1fP4QgFql5sG1J3jW80CWKifiayRhQeHUbVyLPZe2cP7gZbrW6U+3gZ3IysxmQIvhFORpGUpOZcsgCAJVa1Xh+V0vKntWwu+dPwmxSSCChbVWnNDF3Rn/918QRRFLa3NEUSQ2Kp7pyyfw9I4XgZ+CWLVvMRvmb0OlVCEicuPsXWIj49l7ZRtyuYzT+y6QlZ6Ne5WytO3+32nab9WlGfWa1Wbnyn0s3T6P5SWSIQ8CrhEfnUD3egOJ+RZL4MdgRI1IiH8oUpkUUSOiETW8e+bNg4BrAPQb2bP0vAG+QTy68QwHJzsiv0bz+NZzkuKSiQqL4cV9rQmQIAi079kamVxGtdpVGD5lEFuW7AZBK5ft5/2FZ3e9GDtnBPvWHUbPUA9dXR26jejJmQMXMTDUZ+jEAcwevgipVKpl50kkPLn1An0DPaIj4igsKMTF3YnI0GjkChldB2i1qqxsLVk3dwtuFV2p3+yvV5r9Hv7gCuG7EARBDlwGTv9jMCjBH7knakRRVAmC0BPYJoriTkEQPv7QOL5XVBYEoQUwCahYsikI2CWK4rMfeYE/A0EQZGiLyq2AOLRF5YGiKAb82v5/ZoXQxLUdrbo0x7NeNfZtOEJmahZObg5EhsdoO5EN9bG0sSDkcyh1mtSkas1K+Hl/IS4qAalMQrN2jRFFbZNbuUquZKVnk59XgKmFKdf/QflyZJeJuJV3ZeHmWaXbQgPDmdR3Fm26t2ToxAFY21miVKp4dvcllatX4Oj204ybO+IXnaPfQ6cafahasxJ9R/bE5/VHYiLiSIhLwv/9F/QMdMnOyMHB2Q4DQ33qNqvNmf1a/n2dxjV5/8IHfUN9bbepsQE5mTlIZVJGTBuMuaUZIrBpwQ7MrUzJSs+mkmdF/D98oXajmlodGrWalXsXs3DsCgyN9ek6sDPdB3Vi3ZwtPL71nBsfznF85xkuHL6Kjo4CmY4cRBFdfT0K8vLR09ejsKCIAaN74f8hgPcvPuDgbE98dGKpoJ1HnSroG+iTnppBaGA4zmUdEUWRyNBoGrSsi8+rj4iiSNserZi0cAwGRgYYGRvy7vkHvoVGcWz7aVRKJVmZOYiiSK1GnoT4h2JuZca3r1FIZVIcXRwYPLEf6+ZsRUdHgY6eDukpGSh0FBQXFSOTy2jZqSmhgeGlq8syrg7kZObw0+SB9PrpLyl1fRfHdpzGs74HnnWrER4cwcCWo1i5ZyEb5m/HzMKE8y+OI5FIGN5xAn7enxkzcxjHd59FWaSVEt+2bA/6BnpYWJtz7vmxX3Q/x0XFM7n/bGK/xbFo6xw2LdxBbnYenfu159b5e9RvXoe6TWshl8voPbw7KqWaPo2HIJFKqN+8LnPXTaNZ2Q5oNBpkchmNWzfk+b2XrD2wjFnDFyGTSVEoFLhWcKGooIj4mEQkEoGsjGx09XSQKxQUFhSWNDwqkMllFOQVMHXZBE7sPktOZg4Dx/YtaQYdXepB8aP4K1YIzrWNxXne9b6/IzBB8uh7RWUBOA6ki6I47Tf26YT2PvxzUXmHKIp1f2Pfd8A2YCHQRRTFb4IgfBFF8bs82e/VEDoBu4AVJQ8BqAkcEQRhkiiKd773An8GJdFtEtrljhQ48lvB4M+/hjZ/unHBDjr3a8+bp++JDIvBuZwjdZvWxsBQn+M7zyCiZef4e3+hsLAIiSAglUk5f/gKzdo3QtSIpCVnkJ6aQeuuzbG2taIgvxC5QlaaWnByc8S57C8JWQZGBpRxdaDnkC6lX2gfr48sGLOcUTOGcvPcXdr3bPWHAsLVt6eRyqSsmrGRe5cfUlhQhI6OAhCp5FGBT+/8mbNuOgnRCWxbvheNWkOf4d24euo2c9ZO5f7Vx4QHfWPktCHsWXsIiSBw78pjdHV1OHx7N37vPxP0KYSiwmK++AYik8mQlPg0q5QqJvaeSevuzZm0cAxbl+zm01s/bMvYaG/aYdFcOHwVA0N9Lr8+iUJHgUQmpXudAeTl5JOXk49bBRf6je6NSqXi3YsP6OjpUKO+BwZGBqSlplNcpMTP+z3V61ZFADJSs8jKyASgimcl0pMzSE3WrvY692lP/RZ1yM3Oo3bjGujoKrCytcC9SjmMTY2wsrWgecem/NRuLIYlcgs6ugq6DerI6hmbEAQoLi4mPy+fpu0a8sU3iNxsbTG3ZgNPbMvYMGrGUEQRNBqRBWOXab2D/wNQKlUc2XaStj1aoVFrSIpL4tidPdw8fw+POlV5/eQd+zccwdzSjGnLxmPjYMOdi/c5+/QI9y4/RK6Qs/HoSh7deMatC/dYNHYFi7bO5mtAOL6vPxLk95XIsGhMLUw5sessokZrhepeuSx3Lz3gpykDsbaz4tDm4xQWaP2y1Wo1phamuFV0RSKVsOXkGvasPaQdX0Iy7lXK4fvOT+u+JwhI5VKyMrKICovRepKr1DRoUZePb/1QKOS07NyU66dvU1RYjEYUmbRoHDtW7KPPiB5cOHSFE7vOIpFKaN252R8OCH8FRARUwl9WzG4EDAE+l6R7QGs74AQgiuI+4A7aYBCG1opg+O+cbzgwDm3q6ZsgCK5oxe2+i+/VEJ4BU0VR9PuH7R7ATlEUm/3Ii/y78UdXCA+vP+XqyZuYWZkSGhDO7vObQYDhHSdQXFxMalIaji4OpKdmMHrWMK6fvkNEyDeq16tGzLc4jE0MiArTdqrqG+rTqU9bGrWqT7MOjQFoX60nnvWqse7QH8u4qdVqvF/4UqtxDdQqNbp6/1xw/hF4e/myfekeoiJiWLBxlpbHn5KJUqXi3fMPxEXHM3XpeA5tOk7F6uWp17QW/t6BPL/3kitvT1PGxYG8nHwe33xGUbGS7Iws6japxfCOExAkAp16t+X2pQeYWZiSmZbF0MkDqFHfA1GEshVcmDl0AV8DwlDo6jB9+URys3LYu/4IZSu6El9SeLV3sqNl52Yc3X6KlIRUajaojlqtITEuicM3d3F67wXOlVBaj93bx4hOE7R5aj0dxswaxr4NR2jfozXP7noxasZQzhy4SHFhMQ1b1cWzngc9h3aluEhJm8pd6TqgEw1a1mH1jE2kJqVibGpEdlYu9s52RIfFoKevq2XlKFXYOtqQEp+KnoEe/Uf34vyhy+Tm5NGpbzt0dBTcOHuHe5+v/lCD4L8T2ZnZBPl/ZcviXcR8i6NsRVe++ARiba9lES2ZsBpBEGjZqSkDx/VhVNfJNG3XiOf3vNDT08WlvDMymRS/918QBIEVexZyZt9FoiNiKCooYs3BZfh7f+HcwUvsv7Kdmg098f/whZiIWDr1bU+ril3JSM1g8uIxRIbGcOPsHeQKOcfu7WVMtynMWz+DVl2aM7DVSKLDYzAyNiQ7K4cOvdty9+IDABxdHSgoKMLK1oJgv684ujqQEJuERqPB2s6KhJhEbUrPxgKNRkOLTk0xMjHg/uXHjJ8/itdP3vH09kvWH15Os/aNf/iz+ytWCI61TcSZH74rHgrAdOHuf7Qx7V/B96pjtv8YDABEUfQXBMHm3zSmfztunL1DwMcg6jWrrU3d9J/FkVt7uPz6JEe3n+LAxmOUq+xGcZGSm+fu8q3EaSvE/ysqlRrX8s5kZ2q7ccfNG8nmhTt5cO0JR27vQalU0m9UT9yrlPvD45JKpaUiaHK5jGunb1GhqvsfFsjbsWIf2Vm5uFVwYdvyPaQmpaFRa0qfNzIxZPOinYye9RMtOzVjQIsRGBlrb9KOrmWIi4rn4tFr3L30EJlMSlpKOhWruTN12Xh2rz6AiYVW2bNGfQ9MzIw5d+AS/Ub0RK4jp3ejIbhVcGXs3JGMmjEUiUTCt69RnNp7gbTkdMbPGcmGRdtp3rEJW5fsZsiEfkhlMm6eu4uegS5Jccn81H4c1nZWiKKImaUpP7UbS/S3WLoN7kx6cjr+HwLYfmZ9KZ2xUat6HNx8jPy8AiJDY4iLTODwlpNceXsKtVqrldO4dQOO399Ppxq96TKgE8H+IcgVMmLCY7F3tEWt1hAZHk1iTBLW9lbYOFhzeMtxyldzJyL4G7fO3aNT33ZMXjQWU3OTP3xt/wgeXHuMtb01nnWr/erz8TGJhPh/5eDm4yTGJlGQV8AXn0AEQaBuk1pU8qiAvqG261ehq4PXwzfMXDWZLYt3UbtxTT54+WLnaEvHXm04uuM0oYHhRAR9IyIkkitvT6FvoE90eAwOTnaAwMxhC7n98RLblu4hKT4FlVKNtb0lGWkZ7Fx5gPJVy9GhdxsK8gtZO3sLtRvXxMbemk/v/IkOj6FqjUokxadQVKhdsUokAmq1hqbtG+JczpnVMzdSq1ENbO2tiI6IZeDYPiTEJOLq7gQSgVcP3yKTy3h6+wW52bl0G9iZek1r8+DaY4qKivD2+viHAsJfAwHVv8Ta//dBEIRv/EpbgCiKbt879nsB4feI8H+MJP8/hJ/Fsx7dfEaLjk3xevia0/su8P7lB8pVdGPsnOEc23EaHV0dsrNyaNGpKXr6uty78oi6TWvx7tkHNBoNUqkU7xc+aDQaiouK2TB/K75v/Nh3ZTvpqRncOn+Pzv3ak52ZzfUzd+g1tOsPySJPGTAHp7JluHbqFi07N2PFroU/9L6UShVeD9+w8egqJIJAYlwSH9995vyhy2Rn5pBXYuGZk5ULwL51RzAzN6V8lXIkxSUxbu4Irpy4wc1z9/j0zp8yLvZMXDgaaztr1s3ZQnxMImefHiXIT+sR8ezuS+o0rkX7Xm0wMTdGFEFPTxffN5/49NYfA0N9igqLObnnLM5lnVi8dQ771h9GEASc3By59OokmemZ7Fl7iMKCQhxdHNDT1SX6W1yp+bqzmyN+3l/Q0dGhXfeWrJ29mdjIeLwevkEiCEikUs4evEReTj52jrYE+Yfg6OJAdmY2YUERdOjVBrlcxuZFO5m5ajKXX5/CrowNl49fZ8/aw8xaPYWTu8+iZ6inrVlEJVChqjuf3vljaW1BcnwKItoCqrK4GN83/rx74cPUJeN5fv8VFau5Y2xqxNeAMHoP6/7da5SemsHXz2GlgT8xLomXD97Qc2iXUj79poU7ca9Slt0XNgNaXSXvl7606tJMqw+07RTXTt3k/IvjTB04B4VCTlpqBr2GduPe1YeEfAll1d4l5OXlsXjcKjQaDU5uZTh8azcjOk5Ao9bg9eA1nz8EkJqUxkWvE4R8DmXHuQ3YO2qp7SumruPtM2+q1KxIREgUA1uMBAF2XdjM1AGzsS1jw97LWzmx6yxqpZo1+5fSumJXMjOyaNKuITOGzOdR8A1OPzpExNdIzuy9QGZ6Jg+uPWHZjgUsn7aOa6duo1FrkEqkhAdGEBUajSAIfHj1kaS4ZCYvHotMJsP7hQ99R/agbtM6rJ29icvHr9O4TX1kMhlmFqbMXDnph34ffyVEQM1/o//hh/D3qxFdoA/w6x6s/4DvpYwygV8zwRGAxqIo/nfXzSX4oymjgoJCOlTrSUUPd3Zf3EJSfDJdavYFQCqTMXzKQE7tvUB+ibyAXCEv6ZrUgADObo5UqVmJ+1ceY2lrgagRSU1Kw6lsGeKiEpBIJLhXKUthfiEXvU4wqNVIgvy/sv/Kduo0+WXHeVZGNg+uPaHbwI6lcghzRy3Fxd2JXkO6YmxmjK6eDqIocvfSQ+o2rfWbdYW3T72ZPGA2aw4spU3XFgzrOL6USVO5RkWC/b8yb910rGyt2Lp0F2nJ6RQWFNF3ZA9ivsXx7pk3KpUKUQRrOyvKVnIl8GMwrTo348a5u2jUGroP6YKhkT5n9l9k4aZZVK9bjbioeG5duIeOrg5+7z8zds4I7WwuN58PL3xQqdTUblKDtKR0Ir5GIpPJKOPqQFJcMhq1BqVSiVwhp++IHhgaGXBg0zEEQUChkJOfXwCidsX0Mw9de01k6OjqsOnYaq6evkXZ8i7s33CUcpXdkMllBPgG0aFXG9YcWMrCcSuICInkp8kDcSvvzOn9F7W9Fwcu0W1gR84dvAxozesz0zJLFVZlchlyuYyiwmLa92rFg6tPtbNbjQZTcxOkMim1GtYARF49esuzsDvf5cNvX76XU3vP8yDgGmYWphzbcZrdaw5y3fsc9o5a8/mUxFT09PUI/BSMi7szD649ZvvyvVx4cRzX8tq/F4xdwcajq9Bo1NrOXj09Vkxbh6u7M2FBEZiYGbPt9DqUxUq+fY2mqKiIek1rE+AXjIWlOWGB4Vw6fh2JRGDg2L7sXLmPCtXc6TO8ByZmxiTGJrFu3lbqNK5JQX4BX3yD6DawI4Efg8nLzUdXX5djd/aSm5PH2B7TKC4uxsHJDm8vX5zcHOkxpDPDJmu9GvJz86lSsxJvn31g9vCF/DR5IJ99AvF6+EYrGSOT4lmvGt4vfanZsDqCINB1QCdWTluHobEhGrUGA2N9NGoNyQmptOraHDd3Z3Ky80hLTmP94RU//NuHvyZl5FDbTJzwocUP7btIuPpfTxkJguAliuJ3l1HfWyH8TJkwQCunKgIhQCGw6V8a4X8Jnz8EMGXAHKztLHEt78KDq4/JSMuiXCU3woK+YWlrwZM7XhgYGWBla0lUeAwqpQpBQKu7IpGQlZ7Fi/uvuOl7QWskPnIp3Qd3wsXdGWs7S84fusqMlRPQ1dMa5Di6lqFqrcrUbvzPAlxeD9+wYf42ylctR/U6WhLA+l+pPSTEJrF08hrGzR3ByOlDf/W91W5Sgy0n12JuYUpyfAr9R/WmfvPamFuaYWRixKJxK4kMi+b6mdukJKWx++JmxveaztkDlxg+bTCvHr2l59CuVKpeAWWxEh0dHXoP646xqRHG5sac3HWW66dvMWB0b86/OMbHN36M6zUN57JOhAaEaVki+ro0bduQdXO24FbBlaGTB3Jsx2lcyjpRVFBM7YY1+BYaRXRYDFKZlPJVyhHwMYiiwiIeXHtCQX4hapUaqVSKsblWgrphq3pY21tx/8qj0oDgVNaR9YdWACLP73jRrG1DLr8+ybAO48lMz8K5rCMLNs1k3uilNGvfiBr1q7No3Ep+mjyAm+fuYmxqiAD0Gd6DV4/eEvMtDtfyzoiiE++fa6nduno6VKjqzse3flSrVYUnt16gVKpYsn0uibHJDJ04ALlCy4fPy8n/oeaonyYPpEGLutr6S3oW/Ub1RFdPl78/1NLGghf3XzN7+CK69O/ArFWTqVS9Qqnuf4tOzdh6ah31mtWmqVt7iguLGTXzJ2ztrcnMyGLAmD6cPXCREZ0mct37HEe2n+bt0/eYWpiSl5NH35E9Ob33PDb21riUc2Hjgu1Y21vh7x3AZ59AjEyMMDI25PzzYziXc0QqlZKWnE5WRhZvn3rz+sl7EmMTGdR6FDmZuZhampCflk/dprUwMNTn2V0vMlIzmTZoHj6vP6JnoMeDL9e4cvIGnvU8OLz1JAD9R/cmPSWdkM+hdBvYEZ9XnzA1M+HdCx/83q8HoH3vNnQb2BG/91+QSASS41M4uuM0b/X1KFfRFRNzY9JTM/7jNR0RgSL+vcKFfxb/oHMkQbtiMPqhY7+zQlAAG4ChQCTalYE12oLyOkEQaoii+EP81n8n/sgK4eXD18wZvph5G2bw+OYz3jz1pkqNSkgkAq27NueLbxAh/qHsvLCRjLRM1s3ewhffIMq4OqAs0rpBZWfmaAuRJW5kD68/Ze7aqVjbWRPyJZSzBy6Rn5ePlY0lF14e/93xqNVqwoIiKF+l3HdvKAEfg3Gr4PK7Xgp5Ofm0rKANTqEB4QiCQKXqFQj2D6H38O48vP6U9JQMBEFg8uKxmJgZU1yk1BrmrNzH/ivbObnnLC/uvwbAytYSqVTCoi1zMDEzRq6QExHyjddP3nH74gOkEglqjYbHwTfZtGgHqYlprNi1kI6evek9vBsGRgbk5eRRr1ltbOysqVKzEtdO3WLF9PVIBAkSqaS0qzjANxiJVMCujC1+77/QoGVd3Cq4cPn4DQryC2jcugHlq5Qj0C+IT28/c+rRIVQqFVdP3OLyietMXjwGS1tL/L0DGDdnBBqNhl4Nh5CVkcXwqYM5tv0UUrmMytUr4Pf+i1bCo397Ht18TnZmDoUFhUgEAbmOHJlMhlNZRwI/BVOtZmVadmnGhUNXqFKzEnUa16ROk5q8ePCa/qN7cefCA5q0a4i5pRlJccn0azaMueum0aF321+9Rl98AlkycTUJsYn0GNyFS8ev0+unrqWy12+feTOp3yz6jexBqy4tqNlAq5kTGxmHQqEgNyevVCBx2qC5vHz4Bh1dBYX5RXTs05Y5a6bSsUYf8nLy6D+6N3cuPkCt1gYtK1tLTC1MSUlIYc+lLWSmZzGp3ywGj+/HmX0XqNnQk49v/Wncpj7V61Tj6Z2XtO7SjK8BEdy7/ABKHNwEoUSrSBRxdC1DUnwyIiJSiaSkQ12bZlPoyFmwaTZJcUncOn8fjaghOSEFUa3B3NqchOgEnMs5UVhQhLGJIV8Dw6nVwBMbB2sUugrePHmHvaMdUpmMzPRMEmOTmLlqCgaGepw9eBnf15/o0r89K3Yv+t3fzt/jr1gh2NW2EId7/5h16lrJ2f+02unTv/tThfbevUkUxZDvHvudgLAD0Aeml2hsIAiCMdrVgRpoL4qi658f+l+DPxIQIkIiGdZhPGq1mtufLjKp7yw69W7LsZ2n6Tm0K2PnjGBM9ynEl/ghSCQSajTQ6vK8ffq+VKJZIpFoNf81IoJEoNvATtw8exc9Az0mLhxNQkwiNvbWVKtVme3L97Lh6MrfnMXERsahLFbhWt65dJtSqeLVo7dYWJlhbmVW4jL1+ygqLCIjLZMvPkGYW5ny6vE7CvML8Xn1iZAvob/YVyqTolapkUglnH92lPTUDOKjE/nsG8SV49fRN9QjP7eg1Cb0/Utf7vpdQVlcTLe6A+g2qBO52Xk8v+eFVCpFT1+X8XNHsnbOZkwtTEhLzmDCglHs33AUmUxGcVEx9s52XHlzmumD5iGRCLx68g7PutWYs246IztPID+vgL7De/DlYxDpKRk4ujpoZ4ZSCTb2VljbWTFmzgjmj1qqXcHo6ZCeks72MxuY+dMCCvOL0NHToUGLugyfMpCJfWchqkUat21Axz5tSUlKIzo8htZdmhMREsnWpbvJTM/C0NiAdQeXY2phQkZqJgvHr0QQBLLSs7AtY41nXQ/uX31MhWrupZ4YDVvW4/0LH+ZvmsnqGRtLmwvzcvJZOnkNw6cMokrNSr96nQI+BrNi6jrqNqtNh16tAS3jxshEO4kb3W0ynz8E0m90L87uv8g9/yuYW5nRrGwHTMyMSYpP5nHwLTLSMlGpVIR8DuXmmbu8fqpVO2jSthH6hno8vP5EWwAXRTLSs6jdyBPvlx8xMDZgzpqpVK1ZGblCRsjnMKrVrozvaz82LtyOvZMdc9ZOY0THCejq61BYUISpmTEjZwzl6e2XNOvQGGWxknrNa3Ni51m++AYxc9Ukjm4/RURIZOkkpMeQLnx8609EiNayFrR067TkdEDEyvZvTCJBEFDoKigqKEKQCBgZG+Ja3pleQ7tx/9pjNGoNqUlppR7NEokEM0tT8nLzOf/8KE5uP66z+VcEBNvaFuJQ7+82/gKwUXLqv54y+lF8LyCEAe7iP+xUokaaCnQoEVr6r+KP1hCC/EK4ee4OPYd2o1wlNzQaDUsnraGiR3n6juzBw+tP8Xr4hmD/UBJiEhg0oR+TFoxhYKuRBH0KQZAIyGRSZDIZjq4OfA0IRyaXodCRU6NedYZM7F+qAeT16A1rZm3m8K1d2JWx/dXxDGo1ktyc/F80tL16/JZpg+ahb6CnFfS6rjU7EkWR9JSMUmG+v8e6uVu5fvo2554fxdbBmkn9ZvHxrT8atabUo1dHVweVSoWzWxkiw2LoNqAjsdHxeHv50qZbS4L9QkhLzSA/R2uso1arMTE1ITM9k7FzR+BeyY2b5+9RqVp5IsOjeXHvFcOmDsLr4Vtmr5nK8Z2nSYxNwtDIkL4je1DBozyvHr5h95pDNGpTn8TYJD6+8aP38G5U9qzIyukbaN6uMW+ev6cgr5BmHRvj++oTUqmEzIxsBATsnWxJjE2iQjV3EmKTyEjNBMDc0pTcnHz2XdmGUzlHbp+7h4m5MbtWHSA7MxuJRML4eSPxevgG37f+CMDx+/v54hvI83uveP/Ch1ZdmvPinhdyhZzCgiKGTOrPiZ1n6TWkK+ePXEEURYxNjcjJzkXUiOjq61JUWISurg4zV01m3dytzFo9hR6DOyNXyFGr1f+StEVSXDKda/ahfa82jJ83Eu+XvnQd2BFBEHh04xkKHTnZmTmYmBszffB85m+YQZcBHWlXpTsyhYy0pHQQtDWgRq0bcO3kTboM7MDtc/do26MVarWGB1cfl34fJBIJey9t4frZOzy8/pQ9l7ZgV8YGeyc7fN/4UcmjPBePXuXm+XucuLef7nUHoFKpufDyONfP3Gbf+iPc9DmPrYMNb596s2DcCooKi2jcpj7Pbr+kZeem3L/6hMmLx3Ll5E3SU9JZsm0uVrZW3L/6mDsX72tFHEsWxwPG9EGhkJMQk8jgCf2YO2IpiXFJyHXkLN+5gNeP3xEfk0BSXDLO5Rx5/fg9vYZ1Y+GmWb/zqf4Sf0VAsKltKQ7y7vxD+26VHP+PBITf0Z4DQBTFLd89x3cCwldRFMv/0ef+0/gjASE1KY0x3afw7WsUbXu0pFxFV1zcnYkIieTg5uMYGOrTpX8HLh69RrserXhw7TENW9Un2P8rHnWqcv/KI9yrlCMtKQ0DYwNEjYbaTWry4u4rWnRuyuMbzxg6aQDDpw4mOzObiK9Rv0kf/BkhX0JRFimpWqty6TaVSsWbJ+8xNDLA3Nq8tLHt2ulbrJm1mXPPjv6Tr0JYUASrZ23E/30AFaq5M3RSf25feEBRYRGffQIpzC+kbEVXosJjMLc0Izkh5RfHj5g2hGM7Tpd2mM5cOQmVUo2ZlRkZqZmoVSq2Ld+jtTaUSGjUqh4Z6Vl0H9iJ9fO3Ye9kS3RELG1LPAUyUjNo0LIerTo3w9XdmcFtR4MIbhVcSIxLpqigEKlUyoHrOxjbYypFhcVY2VqQmpwOgK2DDXr6uhgYGWBiaozv20+06daSu5ceUNGjAiqlkq9fwlCp1FTyKM/pJ4f59jWKYR3GUVhQxL4r26jZoDojO0/E940fLu5OnLi/n6mD5vHpnT8/TRzA1GUTGNZhPJFhUXQb2InrZ26TnZnD2v1L2bJkFymJaYiiSLsercjKyOazTyAKuZwxc4fTuW97bl+4R9eBndDT12XeqKUEfw7l2rszP/Rd/DWIosjtC/fxqF0VOyfbX3QQ/4yXD14zZcAcBEH7WcZ8i0elUjFx/igObzuFTC4jJysHhUKBrp4O2Zk5mFmYkJ6aSYtOTTE2NeL66dvoG+pRXKQs0ebS1i4eBl4HtN3Koiii0YhsXrSTih7uuLg7ExUew7Htpxk0vi/+77/QrEMTBozpxYqp62jQoi62jraM6DgBSxuLkkKyN83aNaKSZ3nioxK5ffE+RQXFKPQU5OfmAyCTyrBztMHF3ZkdZzewYMxynt19SeM2DXhy+wWDx/clKiwGMytzIoIjCPb/SpvuLYkIjqR6nSq069WmtP72I/irAkI/7x/rSt8pOfKfCgi/pz0niqL43er796YygYIgDBVF8cQ/vPBgtBIW/+cQGRpFTEQcjVrXR6VSs2ftYcytzMjLydf+ANQaAj4GUbNBdQSJQFFhMU9vv0AqlaBWabVWcrJyyMrMJj01g8o1KvL5QwC9h3fn8JYTTFw0mgGj+wBweOtJzu6/yMOgG5iYab2VC/ILUalUGBn/TRWzQlX3fxqnTCajSduG/7S9bpNaDJsyEAfnvynfan+4GspVcmPG8klsW74Hv3dfWDJxDXK5jOYdmyApEXSL+RaLWq0mLTmN6nWrYmxqhEwux8BQH5fyTggCVPasSLP2jXh86zmxkfEkJ6Qwf8MM1s/dQ8OW9WjWoTHvX3zQpmh0Fayfv40l2+YSHRHH14BQZq2eQkpCCsunrcP39See3X2JqbkJ9o62CIKE1KQ0ZHIpSqUUtUrDnrWHKCosRkdHgYu7C2VcyxAfnUDrrs05tec87Xq2ZvbqKayZvZm6TWtx7/JDJi0aQ0FeAbOHL8bG2hylSkVutja3fvvjRTLTs7lw+AprZm3CyMQIqVxKcnwKSfEpmJgZo6eni72zHVkZWTi6OVDZswJPbr9AWayiRccmLBq/kooe5VGrNZSt6Mrjm8/RiBokgsDag0up37wuBXn5pcEAoFmHxsjkMj54+VK78e/5l/w2igqLad21BX2bDMW1vDPbz2z4p32q1qpM1wEdyc/PJz+vgIivUdrv27ZTODjbElXSbKdWqanRwAN9A32q162Kz6tP9BvZk6zMbG6dv4dUKsXMQp/01EwqVitP4KdgXj99RxlnB2YNW0hWehZpKRmIokhUeDQxEbGIwOw1U9m0cAeiKBIdEcOdS/eJi4zn1vn7LN42h9ZdmvPw5lNePXqLWq3Vpbp/9TESicC0FRM5vOUk2RnZlK3gSmZ6FspiZYm9q7ZjvLiomMKCIswsTanZoDpmVuZcPHqN/NwCnMs5YWxqzJObz1Gp1aSnZGBmafaHAsJfAREBlfi/I3IIf9OeEwThONqG4sySv82AzT9yju+tEByAK0ABWtMGEagD6AE9RFGM+xfG/5fhD9NO8wvJz81naNsxxMckYmltTm5OHl0HdCTY/ysKHTmJccnUaVyTB9efolGrSztZ9Qx0KVepLImxSaSnZCCTS7Uy1SVFNkGA/qP7MGftVFISUzm+8wyFhUUs2jwbgNFdJ5OWnE7zTk3wevCGc8+Plhr0/D0KC4rYu+4QvYd1x9H1H6XRf4kdK/Zx4+wd7ny6hEJHQXjwN1bP2kRyfAqJcUm4Vy5LWFAE5Sq6Ehb8DRsHa20RNa+QfqN7MmPFJHzf+DG53yytvWK7RmyYtw21So21vRVJcclU9KhA98Gd2LxoJ+16tGL68ol0qtGHwoJC7J1sufjyBIPbjCYyLJoR04bQpG1DFo5djoWVOaFB4RTmF1G+SlnMLM1wdneiTZfmzBi6gMET+pGfm0+gXwgfvD5CyaxUz0CPVp2ac+/KQ3ac24BCR8G2ZXvISs9C31CfxNgkWnZuTl5OLst2LaB1hS40aFmPbgM74vXwDePmjWTF1HV8eP2JvJw8jIwNcXF3Zs3+JVjbWTGyyyS++AYyfu5IDmw6xohpQ3h88xkF+YXUaVKTG2e0qiyGxobYOFgRHvQNBBAQEEWR5h2bEBoQjoOzXamKLUDfJj8BfJdM8PdQKlVEh0djbWfFuJ7TyM7KJTE2ialLxzF4fP9/2l+tViORSFApVbT36EFGWhZWtpYU5mv1f+QKOWUruuHn/RmZTEr1OlW1KbMSKm9RUTG6ujro6uuSlpyOibkx554epX/z4RiZGJEQm8jqvUu4cOQKPm8+oauri56+Lvn5BVStWZn1h5dzeOsJQgMj8PH6CAJUq1WZ8KBv6OjpkpOVw4rdCzEwMiA7M5u1szajLFZSXKxEIpWgq6tDYWER5Sq5ER+VQHFxMZ71PPB59Yld5zdRrXZlVkzfQPuerVg+ZR1ZGdm4V3Yj4msUXQd05GtgGJFfoyguUlKjXjV6DO1K+56tf/jz/itWCJa1rcWu7/r90L5HZbv+00Xlj6Io1vjetl/D99RO44B6giC0BKqgzfTdFUXx8b8y4P8mlMVKti/fQ8iXMOJjErUFxSMrSElI5c3T9wT5f0UUtTaZYYHhVKhajjnrphEaGMGxHadJS0qjkkd5KlevwOun70mISUQQBKRSGVXqVCQ0IJxeP3UFtAwdVYnVYGFBEbp6OgyZ2J/srBxC/ENJiE0iyC+Ew1tOMHfd9FKjdoDE2CTOHbxM2Qqu3w0ItRp5klviY9y1dn8Gj+9Lm64tuHb6FuUquZGSmIqOroLU5HTKVXJj4sLRzB25FJVaxfXTt7l17h45WbloNBoy07LYW6JjJNfTJSczB4lEQrB/CDtXxKBWqwn4GMy6uVvp0LsNV0/dJCsjh96NhiCVSTE2MeLY9lMc2XYShUKBVCrD0aUMYUHhJMYn41rehSc3n9N3eA/yc/NJS0qn26BOnD1wGVEUadW5Gc/uelGYX8hn3wBUahWT+s5CKpWWGOJIaNK2AaGB4Vw9eQMLa3NkUimLtszm/OGrzBm5BGWRkqbtG2NobIijq0OJVn8NjEwMeXzrORePXEUqleJZz4PbF+9Tp3FNLh69ikwuIzc7jxtn7yCRSlCr1NiWscaujA1hgRFUq1mZhq3rsX/9Ud49/8C89dP/qSdk14XNaDQa7lx8QIOWWnrpP0KtVhMfnYijqwNLJq0mLDCC0IBwdPQUmJhqaZRtu7ekc79fdz3s13QY1vZWRAR/w87RDkNjQ0zNTNCIIkGfgkHQSqdb21qRkpRKRnoWMpmUZu2b8DUglPjoRNr2aMlnn0Bys3MpzC8iITaRyYvHIgiQn1dIi85NSU9NJzsrl/DgCFzcnQgLiqBj7zaM6DSBmIg4HJzt2H1xM7FRcby494qyldwQABNzE1KT0lgzaxP9RvWiqKgYuVxG5SplMbc049Xjt5RxcaB8lbKEBoYzasZQTu4+p518JCRT36gOy3bMJzQgjLFzR3B67wVysvMwMTPmye0X6OgqqNesDn2GdS9t8PtPQ0RA9b/bmCYRBMFMFMUMAEEQzPl+Ngh+dCdRFJ8AT/78+P538OrxWy4cvoqdoy09f+pKfFQCn99/wb1qOaLDY5iydBzxUQmc2nMOf+8APOpUwcnNkYSYRLLSs+g3uheHt5xg/saZjJg2mKyMHL6FRvLo5nOmLhmHpY0FOro6hAaGoyxW0bhtA7wevWFouzG06daS2G9xLN+1AHNLM21HZnwyXo/e0uatHx16/c0K1d7JlgcBVzE2NSYrI7s05fRraNSqPo1a1efG2bvk5uTh9egtIBIflUDZytqiuau7CxEhkajMlWycv53iwmL09HQpLlZSVJiLhbUF6cnpfPENQs9Al0ZtGuDkVgb/DwH4vf+Ma3lnvn2Noknbhvi++sS3r1o2SY161fn41o+8nDx+mjIIY2NDDmw6SotOTXl6+yXW9pakp2QgV8ixsbfG69EbDI0MWDxpNWq1hgtHr3Ln0gMc3RwIC4zgxf3XKHTkiDpyzC1NcXIrg1wh5eWDN1SsXp6KVd25ce4uW06uZcO8rcRHJ9Kj/kAEQcv60krmixzafJzPHwLYcW4Dsd/ieHhDm8IQJAJqlQqpVEb95nW5ePQKUWExGJkYIooiKqWKGg2qk5acRlSY1o/kc4ksxGffQLoM6IhtGWsyUjOpUrMSru7Ov7gW1naWRIREsnTyGqYvn8DAsX1/8fzSyWv4+iWMsKAI5q2fwa1z96jRoDqz104lNzsPfUNdvoVEMWfdtNLO5aiwaMb1nMaK3Yuo06QmDi72eL/wRaGjYPnO+SiVKsb2mEaLjk0ICwxHqVQRHqw1kREQiI9KQKVS8/jmU/QM9dBo1Nw8fw9RLeJawQlTCzOmD57PqJk/0WNIF3Kzc8jNzsXKVht0ZqyYhFyh9dR+fPM5KYlpCBIB1wqufHj1kUtHr1HZsyI6ugoiQiIJ8v9KwMcgRFHk9ZN31G7kiVyhIOJrJMpiJUMm9CMlMY3Rs4YRFhSBsliFSqWmuKiYFVPXoVapSUtJZ++6w0gECXaONpiYGbP38lYGtR6FXCbD6+Eb2vVoybZle2jUqv4/NXz+2yH+76WM/g6bgdeCIFxCm9XpC6z+kQP/Z9/RvwtiiWeuUqnk6omb6Bvq8faZN/qG+uTn5hPwMRh9Az2yMrIB8PcOYGTnCeTm5JOXk0fct3jqNa3F5kU72b9ea/gharQCXEPajuHUo0MYGhloVTSNDcnPzaegoJBhUwYR4BtEoF8warWahi3r0bBlPZITUpFKJWSkZhL4KRilUoVbeWc6evbhp8kDadSqHj+1H8fqfYuxsrNixpAF7Dq/kcqeWjXyuKh4RnebwuKtczi97zzGJoYUFhSSmpSGiMgXn0BMzU2IDIumuKiI8OBvIAgI2vwHapUaQRCo4lmRL76B5GTl0qhVAzYcWcHnDwGcO3gJqVTK1pNrmTZ4Ph9efcTEzBiPelX59O4z5tZmNGxZDz19XVp0aMyIThMQJBJ6De1GRlomTds2ZOOCHejq6RIeFIFGo6XqZmVkI4oivQZ34drZO8RHJyCVShk4pjdpqRl8fOOHoYkh9ZrWps/w7gxtN5avX8JYsm0uNRt6kpGSgZ6BHjKZlOSEVKrXqUr9FnWwd7LDrbwL43pNp0HLutRtWosbZ+8QERJJ5/7tCPkchktZRx7ceMqrJ2+p1bgmPl4fqdusNnK5jPtXHvMtJJLMtCwatqzH8CmDGN9rBnoGupSv6k56ajon7h/g/tXH9G08lIatGrDt9FrGdJtCw1b1GDFtCG4VXDh8cxflq7qjLFayds4WegzuTLXaVTA2MaJsRVc69W1H03YNSYr/icHj+2Js+tsBX89AH3snO4xNtbTUzn3bEez/lQpV3YmLSuDg5mPk5eTRsGU9fF9/oqiwmOSEFHKyc0sd+QRBwKaMDa7uzqQkpZKamIZEKmHQuP7YO9owrud0Ni/eyeZFO7WGT2bGuFVwQd9Qj92rD3D8/n5ad22OTCbDxt4a1/LOJMYm8vL+K0Db8Pks/A4FeQW8fPgWU3Nj5o9eRrBfSKlPtZ6hLplpWZzaewGJRILPq09oNBqO7zpDgxZ1yc3Mo0LVchzYdAyFQo5UIkFTIlN+9/Ij5o1aSrmKrkRHxKFWqfniG8Slo9dITkj5jwcEEVCJ/5srBFEUT5Q4tLVEm9XpKf6GH/0/4n9TnenfiPot6rJo62xsHWz4WRZaIhFo2bmZdkYmQH5eAaNnDaNl56YgQFpyOusOLqNc5bLcunCP10/ek5+r7UzV09fF0MSA/mN6kZmexdWTN2hbpRs9Bndh9f6lrD+ygosvTzBp4Riq1qqEqlhFfm4+r5+8Q1msxNrOkoeBNxgwpjfLJq9l3qil6Bno0aFXG96/8CExLpleQ7tQrXYVzC3NqOThjpmlaen70dXTxa6MDcYmRphbmdPrp2506N2WlMRU2nRvhSAIpKekk5udi1qtQaFQIJfLEUWRghKrTaFE98jAyIA2XVugo6ugiUu70mKvsYkhto62jJ83ksKCQroP7kznvu1Rq9Q8ufmctJR0lu1cwJJJq9FoRBQKOXEx8UgkAo9uPkMqk7Jk+xyWbp+HRCqhfa82iCVMpQFj++Lq7kR+XgGu7s4UFxXz4OpjDt3YRVRoNPcuPyQuKgFDYwPKVynH+rlb2TB/OytnbCi9aVvaWJCalEZoQDhXT97kye3n2DlaM335RGQymbZmlFfA1ZO3yEjNxMzaHKkgISEmEe8XPljaWFCzfnXsHW3R0dVh+opJjJg+hDbdWmBlZ1XiRyxSsVo59m84yvhe06nfvA41G3gS5BeCSqVGoatArlCUXhePOlXR1dMhNyePh9ef4O+jVW+fuWoyq/YuptvAjuxde5gu/Tv8ajDwfeNHh+q9iAiJxNrOkmq1q7Bx4XYA2nRryf3PV2nYqh4bF+4goMT85uTuc5RxdSAlMRWhJOg7ONvjUrKKad25GT6vPmJgqM/DwOtcf3+OU3vO4fvGn3JV3HAp54SxmRFSmYTO/dvz2ScQM0szFAoFwZ+/EhYUwd0rD4kMjeLp7Re4VykLaGVFbMvY0Ni5HR2r92bR+BUkxacgl8uZuWoKXfq3p233ljRqWZ+igkJ0dHUwNTdhxPTBjJs3EhNTY0I+h/ItLApzK3OS4pIxszRjwoLRrDmwlI8llOEPrz4yc+VkrO2sMLEw4fTeC9q+IM2/09791yEioEb2Q4//BkRRDBRFcZcoijt/NBjADxjk/F/AHy0qJ8QmEh70jU/v/Xlx/zWhAeG07taCBRtnMqzDODLTsthzeSsrp61HV1eHzz6BOJUtQ0pCGuWravOeWrkBAQtrczLTszj96BDtq/Vg0Li+FBYW0XdET4L9Q1g6aQ0nHx7EztGGn9qPo+X/j733jrOiStf9v6uqduyc6KZpmpxzzqCAgKCYcxpzjqNjTmMaHXV0zDknjKgoiIIEQXLOTSeabjrnHatq/f5YtQvn3HPPYe5xZq6/uctPfT7YvXvX3rWq1nrf533e5zluCqMmDP8bzaHEuOvKB1j0+Q8sK/oG25acNPZs+g/tw9oVG/l6w7z/tPcA4MVHX+enH37m7UUvORtAI8cMOMFVONV0DX/QT3JqEjUHD1NNk1KCSCmJhKIUdOtEXXU9T7//KLdedA+xeJyMrDRqKusASV5BLlk5Wcw6ZTpdehZwxck30ntAT/Zs30dyShJpmWk01DQwatIIiveW0qt/D/Zs3Ut1VS1ISM9KpbmhBdu2SXPUQttbQ6RlpBJMDhJMCnCwtJJIJMKz857g56XreOPpd+k1oAcVpZWYcZOBw/u5DXrJqUl8/dEiwqEwlmlx9OxJLP1mBQVdO1FRehAEHH/GsRx/1rFcdsK1GB4Ppmly5a2X8PLjb5CSlkxySjInnXccH77yCTWH6tA1HSltcjrmUNi9M9WV1Vx395WsX7WJz9/+iuzcLPIKOrBh1WaSkpO468lbmHHiVD554wsGDO/PgGF9/5e52b+7hLxOHUhK+Vtv7H0793PeMZfx8Ev3MPW4Kaz8fjX9h/QlM0c1L+7dUcQjtzzJI6/cy59vV2KJOR1zyMhMIy0zjatuv4Sjes2hxcm0+gzq5TZ/AXTr05WSPaWAyg6klKRmpNLW3EbvgT3o0ac7KxavwvDo+Px+5q/9AI/Xw4yBJ1F3qI5bHrmBFx95lX5DeqPpOh6vhw2rNtFrQE+KduwnHIrwzZZPufXiuynaWazc9aR0Xfme+eAxqqtqOeHsOcwZdhpm3KSupp5BDrX62Y8e54pTbmTSMeN469kPCIfCJCUnuTpKV91+MakZqY4q7++Y99pnKhMcPQjd0KmtqiWnYzYbV21h1inTeeTl+474+f81isppI/LlxFWXH9Frv/Hf95tpTPu3yxAA/vrHl/jDRXfTUNNE0c5icnKz+OHLH3ngpsdorGumpamVy0+8nqoD1RT2KOB3151DRWklV995CXc+eQvBpCAZ2ek01DaQnpnG2Cmj+PTt+dz0wLVcdMN5XHHrxaz8fjUvPvo65151JoXdC3jpsTdc/v+IicN45OX7mPwfaKV9B/XmmrsuY82y9az8fjWLd87n6jsv48xLTsEX8HP8iNN557kP/5fvk5mTTnaHTHZs3MWX739DVUW1kswWgICBw/oRbg+rzUBAVm4WmqYRalMObxJJ9cFqwqEwzzzwIi3NrcSjMTweD7NPm8GoSSPoPaAnG1dv5uFbHufrjxYhpWTvjiKGjR1MJBwlv3Me8bjJ9o07CbeHWb7oJ5oam91CpW1JPF4Pp154Ev2G9KWxrolYNEZLUwtlReXs2rKHluZWfH4fyanJ+AJehCZobmjBNE1OPGcOz3/yJAOG9yMWjREI+pXUhCY45YITGD1lJJqucbC8krxOuUydM5nLb71QKbJOGsFtj93IlbddQn5hHjc/dC0DhvXjxPOO44NXPiU1I42ZJ04DAZk5mYTbw1SUHuS4M47llovu4qNXPsWMm1QeqGLuWbO56f5riEaiPHDDo6xeupan//gCb/71PV578m3uuvIBd2GuqazlrKMv4tUn32LF4tV/M2dJyUGW7P2KqcdNobG+iRvPvZ03n3mP9tZ25gw7jQ2rtvDGN8+T1ykXf9DPsHFDeOy1P7J/dwmL5y9hw0+b+PPrf+RPr91PRnY64VAYTRNKIbZHZ0odKirgNqGF2lQDWMneMjas3kxba7tyJwtFmDvqTPbvLuGU8+cybupo1i5bRzgUprBnITs276K1pZWrbr+E7Rt2kpKWTHpWGkkpQRpqG/EFfCBA0wRp6akEgn6uPv1m/nyHaqa876+303tQbzp16UhDbSOBYICYQzVNTU/FNE06FXbk1j/dQE1lLVfcdjH+YIBH/vAksVic956fR111PUNGDyIjK53Na7bSIb8Dz817EsPQj0hD6tcfAhPjiI7f0vhtfdpfYezeupdNqzczbOwQln67nEkzxvHT9z8jpWTXpt1EwhFGTBjKjo27MAyd6spa+g/ty4nnzOGJu59lyOhBGB6D9Mw0MrIz2b+nhB2bdqFpGpnZGSz87Ht2bdnDqb87gey8LL79dDFdenTm/KvPYuTE4Rw9exIHSg7SWN+Ebuhs+nkLQ0YPQtM03nzmPQaNGMCCeYtoqm9m5knT6D2gJ70H9OSd5z+g9lA9HfIPu0Pt313CbZfcy0Mv3cPpF53M7Zfdz8rFqzDjJuOnjaVrz0K+/eQ7Lrn5Au668gFaGlsZNmYwhd0L+PKDb0nLSqOyrAoAy7RJy0glOzeLrJxMIpEoqempfPfFD1imxUU3ns+KxauJhqN8M28RHo+HvoN7M/es2Zx16Wncful9DB0ziI2rt3D6RSdSvLeMLWu2sWTBcicC/llFlR8vwh9QvP2OnXOZNHMCH7/+OV6fF11onHTe8Wz8aRMvPvo6x548nevuuZIlC5bx2B1Ps3TBcgp7FlK8u4T8wo7c99fbuPuqh/jsnS+59ZEbGDF+KL0H9KS85AA/fLWMVUvW4vV5aGtuY9PPWznxnON46dHXFUymCcYdPYqGmgZCbe0MGzsI21INeV17d2H7+p3s3LSb/kP60tTQTKcuHSnaWcyUWROZO/IMhIBLb76AG86+lStvv4TWljae/9Or+Hw+xh41ij6DepGdl8XvH7yWt599n3ee/4jFO+eTkZVOWVE5p048n5sfvJYzLjmFjKx0nnrvUe647D58fh+xaIzF85dw1qWq4SsQ9HPd3VcAcMyJU3nq3ue59ZJ7SE5N5kDJQfoP7cOOjbvI65TLoYM1lO1XxfDeA3qyd0cR2bmZBIIBuvXpypof1+HxeaivacDj9dC5az5b1u2gqaGZs466EMu2SUlLQdo2QtNY8NFC+gzqxaGKGt54+j0uvP5cDpZV4vEYHDf8NJrqm/H6PDz59iOYcZNHbn2SvLwsKsuryMnLZv77C3jgxsfcWpXSDDuaMydfSDgcpqBLPpNnTKChtoGjZk/i+/lLWb1kDb0H9gQp0XSd4ROGsuTrZWxdt92RwR5BRlY6J44+Cwno+j8/rpUIrP9Lawj/k/FvlyEEgopZs2rJGloaW9m5aTcp6al0792V2kP1dOnRmQ2rNqNpGj6/l3UrNvL4nc/wyZvz0TSN5qYWKsurqD1Uh8drUHeonmvvuYK0zFTaWtvZvmEnPp+Xsv0H8Hg81FXXk56VRtn+A25R8KsPv+HxO57mm48Xc9mJ1/PTD2so2VtGXkEuV995KcPGDqaluZXmhmaeeeAlyosr6Na7G916F/LK42+xZ/s+zjzqQkr2lmHZNo/e9hduvVQV3B574wEefPFurrv7ci79/e8wDA83nHMbbc3tFPbozNZ12/l63iLyC/Noqm9i+tyjGTiiP0kpQc654gw2/byVcFhpGI2fNppQe5hoNEZKWjJmLE6H/By69+nGGRefRFlROY/f+QyvP/UOqRnJbFytvJQWf7mUdSs2Yts2+3YUsWvLHmzLot+QPrS1tNPW0kaHvGxqq+qx4iaBoJ/8zh25+s5Lee+FeRT26Exmdgb7dpUQTA6wbOFPzDxxGvV1jdQeqqOxvok92/bS3na4BvLo7U+xf3cJSxYs54Krz0bXdbw+Dzc/eB26YTBk9GC+/uhbbNtG0zRsyybcHkE3NE4693i+/mgRXXoWcuhgNXu27iMajbJ1/TYi4QjX3nM5uqajGYLbL76PIaMH8exHj9OpayckEEwOsmbpOqQteeq9P9GzX3cevvkJzLjJ9OOPor0txAXXnk1GVjpFu4q595pHOO+qMxk/dQymadJY38S4o0fhc8xsjj31GAaN6M8Fs66gtKgcy7I4b+ZlnD31Ygq65jP79Jk01TeTkpqMtCU7NynNsuqqWrr36erqAtVV1yOEYMjoQeR3zmPFolV07NyRuWcci5SS/M557NtVjJSSzJwMcjpm07VnIWOmjHT9qhPyJY31jbS3tbNg3iK++/wHQqEIZlz1Q6RnpfPtx9/R1tLGuKNG0aVHIcPGDGbkhGG8+/xH2Jaaoz6DepGSnso7z39IbXUd7a0h1q/azL4dRezZto9rz7iZoj0llOwt4+uPFnHxjReQ3SGTKbMmgICM7HSqK2tpa27j208WE4/HOOWCE7j05v/KTfIfM6RUReUjOX5L41+yIQgh/iyE2C2E2CqE+FwIke78vKsQIiyE2OwcL/7a5+7Ss5Dn5j3B8WfOIr9zHudcdQaZ2ekcNWcSBd3yKdpVTEpKEh//9A4fLn+LacdPYcSEoYDSxy/eXQKojlKf38vIScN44q5nlDxAdjpvfvsCi3Z8waOv/ZFIOEpSchCPx8M1Z9zMvdc8jJSScy4/nU9WvcsxJxzNvU/fxuhJw2lraaOuuh7Lsvj9A9fyxZr3aW1p593nP2Tdig188e5X6LpOelY6AqHE4grzeOaDx9i6bgffffYDzz38Cn+46B7uuuIBThl/LqdMOBcEpGemk56Zyu+uOwchFL++6kA1SPj+y6U01TfT3NjCJ29+QXtbiJamVsLtYRZ+9gP5nTvSrVcXJs+cwInnHU9NVS39h/RGOjr2obYQe7bvIxY1CSQFOPHcObQ7kgQZ2elEIzEmzxzPW4teJCcvCyEEHTt3pKmxBc3Q6Ng5j9MvPImefbvx1P0vIKXNR69+im7oFO3cz7KFP1G8t5SJx4zjpj9eQyQUxvAYSAn9h/bh8lsvZsqsidiWTWO9gqGuO+sPjqaQajA0TZP1KzcQDkeYedI0Zp92DEfNmcTzj7xCLBrnk7fmk5mdTvl+ZdAiNMVG83i91Nc0cNvF9/LzsnXUHWpg9bK17N9dQm6nXB677SlARahev5exR4/iqfueZ/WP61gwbyHNjS0s/Ox7kpKTuMSRLG9rbafmUC3rf9rELRfdzdP3v8Bxw04jEoow8+RpzDp5OnPPms3yhT9RVlQOCCYeM56iHfvZv7uYea99xmdvzScpNZnTLzkFTRMUdOuEapmDgweqyMnLAilpamwmryCXJQuWs2b5Brr17sLRcyaxYvFqdF3n1N+diK7r9Bvcm+92fEF+Yb6q18TibN+4C5/fQ2tLm5I9CUeJhCJUlleBECz9ehn+oI9r7r6M9tZ2Fn3xA/dd9wjffbGE6kqVpXz+zleUFpXj9Xm54raLEUKQnBLk6fcfZcT4IXTsnEssEqOitBLLttm+cReVZVU0NTST1SGD91+ax/nXns23ny5WvgmaxlHHTsI0TaUXJYW6Hm9/+WsvE0cwBJY0juj4b99JiNeFEDVCiO3/m98fJYRo/sW6eM+v/nWc8a/KEBYDA6WUg4G9wO2/+N1+KeVQ57jiH3LyL5ayYN53dCzsyMevf07xnlJe/8s7NNY1A2DZNpvXbOX8GZfRtVch61ZspKBrPpNmTkBKhYWPnDCM0n3lrF+xiePOOJYpsyZy2oUnkpmTwU/fr+a2i+9l2/odjJo4nJvOvx2QNNY38uZf32P20FNJTk2iqaHJkQj28tYz75OekUafgb3w+rzkdcqlc7dOLNrxBSefP5duvbsyevIIXv3yGWqr60hJTeaFP73G0m9W0K13F3r2787vrjuH9pZ24jGT5NRkpcYqJZFwhHA4yguPvIrQBEkpQQyPwl679iqkokw1nNdW1TFuyiiCSUFGTBzKwdJKLrz+HO5+6lbOPvoixkwZSXJqEutXbeG9l+bR1tKuConA4FEDGDC8H+tXbmL0xBFMmDaGcVPHIG3Jx2/M5/KTbmD5d6vw+j2U7isjHouTmZXOK4+/xbsvzuPMy05h7tmz6d63G6uWrCUlNZljTpzGMw++SHpGGg/c+BgVZZU01jfj83u58PpzlN3pY6+z11FytW2liBkKKWOj1uZW3nj6HWzbZsyUkaRnpvHd/CWsX7mJHxesIMGnkFJSXVmLbUtGjBtKMKh8LGKRKClpySCg75A+bkG06sAhzph8AdFIDMNjsG/HfqQtOeaEo4lFY0w/7iiW7P2anLxsCrsX0GdgTwyv0s4fOnoQ32z+hNGTR3DsKdOZfeoMjp4zmatOvck16tE0tcGMnDCM3E45WKZFQddOfL7mfY45YSq3//kmnnrvT47XQJBLf38B3ft0RTcMkpKCLvNGExr1NQ307t+TUZOGU7K3jDeeepeDZZXE43Feeux1AJoaWyjdV872DTuVjERWGoU9Cgi1Rxh71CimH38U191zJelOk91J583l+vuuos+gXnTu0oloJEae01QppWT7xp3UHKpj1OQRWJZFIMnP+y/Oo762gYrSSlYvWcumNdsOs/RSkzj/6jOxLAuP18NzHz9BNBJD03WaG1so3VdGVocMWlrauO/ahyneW8ZZl59GSlqKojvPmfyPWCb+y6GkK361DOFNYNZ/85oVv1gX/z5HoL9j/Es2BCnld1JK0/nfn4GCf+b566rr8QV9dOlZ4Aq1DR41gDsf/z0jJw4n6iyelWWVfPHeAu5+6lYksPnnLeTkZtGxcx7HnzUbn99LVocMcvOy+fqjhQwfN5TXn3qHP1x0N6uWrFEicV4Ps0+fyUU3nM+zHz5OanoKpmmyb+d+Lpp9Ffdd+zCN9U1MPGYcRx2rDI12bt7Nn/7wJPG4SXqm8i+++o5Lue6eK5FS8uyDL3OwvJLK8ip++HIpr375DH965T7WLFfGLghcbf/klCRsyyYWidHa3ApAj77d6dm/B0ITHCg+CBJ69lMq5i0tra6wnqYJnrrvea446QYl+HbLE4Tbwhwsq0QAOXlZTJ41gUkzJ5CUHCQzO51zrzqTh1++ly3rtvPVB98iNMGlN19AU30zAjAMRXmVSLw+L7ZtY5omS79Zwfx3vyYtIxVfwEvJ3jKuuv1ipsyaxJAxA9E0wYcvqz6bWDTOG0+/y/JFq0jNUI17uqGYMMmpyfzx2TsZNXEYhd0LSE5NQiCYNvco+jg+17FYHCGEy7V/bt4T6I58yN6dRdRU1dF3cG/8QT8VpZUkpyTj9Rrs2Lwb4RRuNU2ntbmVLg68tXvbPj554wtGTBjKucdcgqZp7Nqyh+I9pTz44j0s+3Ylpqlu+fLiCt565n1AyUSPmDCU5sYWrrnrcj589VM2rNrMR8ve5PG3HuKRl+8jNT2Fo46dyKLPfuCeqx/iqfte4N5rHmb/rmJ0XVOWqFLi9Xk4/eKTiEai2LaNLW2ktDn9kpOpLD9Ex865IKBbLwUrxaIxGmobOVRxiKtPv4l4PE7n7gUs/PR7mhtamH3qDLau20F7a4ixU0YSCUc5avYkrr79Yhrqmgi3R1jm9CF06pKPpmv06t+DrJxMMrLT+XnpWgCa6ptpbW6jplIx3GzbJjkliRvvv4a/vPsI6Vnp6IaBrukMHNGfsqJymuqbSE4J8vqT79B7QC/qaxuJhqMA+Hxejjp2Eq0trSSlJP3TdYxAbQgx23dEx3/7XlIuBxr+8Z/6vx//NxSVLwI++sX/dxNCbAJagLuklCt+7ROOmDiMRV98zydvzufiG84jr1Muj9/1DHdf/RC2bTF0rNJV0XSNlqZWHr31STweD22t7fQe1IuUlCRef+odzLhJMDmJQJIfw1BYa/GeUhCCiTPGsebHdSz8bDGpqSm0t4Xo2a87oyePZNzRo0nLTEPTda695woyszM48dzDUrobV2/hq48Wsn3jLjrk5/Dk2w/zh4vuBuDR1/6Iz+/lrEtPo762kW8/+Y5we5izjr4YM266UhVtrW0YhocrbruIt/76PtVVNYoKun0fzY3NDBjWj5bGFqorax2V0oOkpqew+edt6LpOMC1A975d2bJuB/F4nJ79uzvKmS1ouqYWACEc7+QkqioOoesaumHwzAMvKgcxTaAJwQcvf4IQgmBKkHBbWGH4tk15cYViiEj4+sOFmKZF0c5iYpE4trRpa2knu0MmL//5DU678CQ+eu1TDMMgmBxk+tyj+PiNL1y2UUGXfA5V1vDcvMd56r7n2bZhp+v3IKUkGo6wbtUmp3YQ5sLrz2Xdyo1s27CDR/7wBGiC7n26ccK5s3nq3ucp2VvKWZedxpt/fQ+Pg6Pbls24qaPZ/PNWCrsXsG/nfvZuL6Kmqpb7/nobPfp1J9QWIrtDFg11jdx43u00NzSTmp7Cw7c8wUufP83wcUOIhCPMOHEqc8+eTSQcpe+g3ny+5n1i0RjrV26kY+fDMum3XHgXtYfqOFB8kHkr3kTTBB3yO/Dl+9+wfdMuIqEIb/71Pcd208+erXsRCOX5bRjoukHJ3lLqqusx4yb5BXkU71W9DcGkAAdKK+k7uA8HSyvRdY3qg9WkZaRSe6ienVt2E24Ps2b5enadthfbsjHNOLOGnEIkFMEX8LFlzVYksHXDDpKSg2i6huExuOaOy1i/ciNb1m2nxGE8+f0+5p4zW9XxojFuu/Reho8fSl6nDnTomM2xpx3Dgo8WscmpRXUqzOfSm3/Hn279C916d6VTYT4//7gW07S4+8o/OlpiBt9+uvhvuvz/GUPKv6uonO00iiXGy1LKl//OU44TQmwBKoGbpZQ7/s6/P6LxD9sQhBDfA/+ZAcCdUsr5zmvuRDn6vOf8rgoolFLWCyFGAF8IIQZIKVv+k/e/DLgMoLCw8O/6bMmpSfQZ1ItJMybw3gsfEUwO4At4aWtuY4xTFNu4agvjjh7NuhUbMS0L3TAYPHIA5cUV7G1Q0JLhMagoqcCMm0yeNZ7y/RVsXruNYFKA8686iy1rtjHnjJks+Og7Bo7ox+qla3jzr+/Rf1hf+gzoyYJNHwNKtnrdig0cd8axfPnBN5x4znGc5qinpjumOh075yFQ0emb36rSim3bXHfPFbz02OuYcZNAMMDjbz3E2899wOL5S4mGI7z34jwOVdao6NzjIR4zOVBcgeEx6NmvB6H2MNWVtRR060TxnhK69+lC6b4DpGak0qNvd3Zs3E1qh0zGHTWKd57/iMycDK687RJs2+Lzt7/iQMlB/AE/Hq8q3JbvKyfUHmbg8H7s2Lwb07RoaWxxitjN2NLG5/ORnpnqSEurgqNl2+i6xkU3nc+GlZtZsfgntm/cwatPvkVWTibjpo5mwceLsG2bzJwMPn/7awTK5vJQRTXxeJzr772Sbr27UFNV50hWT+WHBcsp6JrPy4+/hW3apGakcM0dl/HkPc8SiUTp3rsrB8uqQEJDbT3RcAzDMPB4FbTVs38PGmobCAQDIKBH327s3b4PoeH0A1zMuy/Mo1PXTvQe0JPiPaXUVtdTU1VHa3MbNz90rSIL3HEpgaCfd577kOrKGpZ8vYw/PHI9t1x4F6uXrmX+2g/o1CWfZz7889/cq/U1DXTuXsDJ58/lmQdf4qsPFhJI8tNvSB+8HgPT0KmtVt83HIqw9JsVJMwFvF4PaZlpLPhoIT6/FyGgsuIQSKh2zJ+CyQEGDu9H8Z4SMrMz6Tu4Fz9+uzLxjKloPimJKbPG8+UH37Lyu8P2J2bcxLJsNF3DjJm0xy22b9yJruvcffWD9B3cm9J9ZWiaRu+Bqmdl0ec/EGoLK9e6ddtZu0ytkzs27SbUFnIL2WbcpLqymsduf5rZp83g6w8XUnOoFsu0iMfiJKUEEZogMyudcHvk73r+f40h4e/ZEOr+h30IG4EuUso2IcRs4AuUpfGvPv5hG4KU8r+UHxRCXAAcB0xLGPBIKaNA1Pn3BiHEfqA38L90nTk77MugGtP+ns+2bOFKSvaWcfScKbQ0tSKlZMLUMXz72fdsXLWZ8v0VLnc7Ho+DhFB7iKLdJYTbw8w8ZTrfz1+KGVdy2M8+9ArDxw/BF/CChPzCjvz5zqdpaW5l6OhBXH37pSz/bjV/+sMT5BfmU1tVS+m+cj5+4wsuuek8brvkXg6UHCSrQxZP3fc8XXsVMmHaWK6641L3M994/9X/y/dIMKGOnjOZAyUH8Xo93HnFHzEMg1bne5Xvr8AX8PHu969w7rRLFVwjFdtq5ferSU1LISUtmfL9BxAIiveUgVQy4eFQmHAoTE7HbN55/iO8fi+xWJwHf/8Yhd06U16s6I0NdY1YpsneHUW0NCpjmm0bdzplTjBNi9pDdSSMg6ORKOlZ6XTuVoDh0dm9bR/jjx7Dd/OXMPfMY3nhkVfp0r0zumEoO0ZN8MRdzxBqD5OZk051RQ22tLn6zsvI7dSBu698kPaWEH+55zmaG1o4WFZJx4JcBe0IjX6D+/DDVz8C4PV46dKzUNVPehRStv8ABd3yKdt3ANu2aGtuU8q2sTg/frsSoQmCwQB9B/cmEAyweulaGuubqa9pJCUtmfnvf0OvAT24/MTreOPbF7nxnFupq20g1B4mEorQ1NDKuy88Rfn+ChZ+9j37dhTRuVsBN9x3Fa8++TarfljDxGPG/k1W8Mvx+oLnuWDm5SyYtwiBoHP3Tnh9XgaNHMAF157DW8++z/oVGwG1OWq6TntrO6A67rM7ZnPoYDVen7o3PR6D5NRkmhyF1FB7iPraRsLtEaKRGCu+qyO/S0eioShnX3oaL/35DXI7daCtNUQwKcCcM2ay8NPvMU2LSDjC7NNncKiiho2rNh92EpSS4eOGqmfImfPdW/eiaRq5+R0o6JLP0m9X0HtgTypKK4lGouQX5hEOhaksO8TTHzzKw79/nObGVixTCTACtDW1udcl8R3HTh1N975d/57H/1caAvufxCD6ZUAspfxGCPG8ECJbSln3a5/rX8UymgXcCsyVUoZ+8fMcx40NIUR31C5Y/GueW0pJa1Mr8biJ7ty8Lc2t7Ny6x7GVtDlYVok/6CcjMx1d18nOzaL/0L5u52/vAT3p2a87SSlJjJ4yAsNrsG7FRj558wuuvvNSTrvwJJoamkHCX+9/ifOOuYwF8xby6ar3yMnLwjQtNq/dyqdvfcG+XcUcLK/ihvuuIi0jlStuvZjxU8dQuq+c775QorJtLe2sXrrW3aQSo/ZQHS8//iZXnnIjdzz+e6YeN4WiXcVsXbeNrA6ZPP/xE2iaRjQS5cm7niUej3Phjedy8wPXUry7BMu0aGxocq1ApZQgodeAHliWTUNtE/ldOnLiuccxbupoRo4fSscCZVpTXnwAIaBjYR5SSoaNH0prU6tzjW2CSUHyC/PQDZ3BowZgWTaxaAxN0xBCULynlKqKajas2kxzYwtbN+zA5/OyaskaBOp9k1OSlIDe2MGUF1dgmRa2qeZLN3TWLFvP/dc+QiApgK7raJpgjRNx6h4d25bE43Eqy6pcKKO+toEDpQfRdJ2eA3oQTArQ2qgWmnjMZNuGHSSnJXPzQ9e6vsHxeJwPX/2UK2+/BNNU0FGnLvm0tbSzb0cRuqY6wW3TIi0zjbue+AOVZZVIJCX7Sins3hnd0Dnq2Elce88VnHHpKTx+1zPs3LybwaMG8vhbD/+nEuib12xVOkjnHc/vH7iWbr274PF4mDBtLD37duPtZz9g0+ot5HXKRWiCcFjJugtNKDtWAeVFB0CqArkZj2Pbksa6JqeQXkO4PUyfQb3QDXV+y7YItYZoa2vnsTueoqW5lV4DelBVcYhYLEY0EqO9NUSoPYRt2ezespfmhma3wzqQFMDw6ITa29m0eot7XyVgwsb6Jn78dgXSlkydPZloJIplWuzbsZ/aqnoQsObH9VSWH1Iudc610HRFhgDFbotGYhR268Q3H3/H2kTt7J84En0IR3L8T4cQIk843XdCiNGodbv+f/zG/9m5/hXSFY41p4/DX+pnKeUVQohTgD+iYCQLuFdK+dV/935/j3TFyu9XK7cpYMSEYaxbsZFgcpBe/bqzdf0ONE1gGB4s28SMWyr7TlwiAYNHDWLX5t2kZqQ40s3HsXzhSjp2zqP/sL7kderAi4++TnKqcvmqr2kgHApz4Q3n8ebT7zJ49GDuevJmuvYsVJ7FKUFamlrRdZ3fX3AH+3bup7BHZ6Qt2b11D6MnjyASirJpzVY+XfUuf7nnWUZMGMa5V57BCaPOxBfw0XdwH0r3lpJXkMv5V5/F+bMu56xLT6W1uY0FHy8iOzdLFfR++V0SX0lTEZwmNGypNrzEazRNIzk1iVBbiHhcGatn5WZSX12PdH5vO5CB1+shJy+HitKDSCnRDd21nAy3K9ZPzwE9KNtXhmlZzD51Bgs+WoTQhLvRGoZBanoKDXWN9OzfnYtuOI87Lruf3gN6onsMGmsbaGttx/AYfLzibd565n3efeEjDI9BQdd86qrrCYcipKQmk9Uhk+59u/H9/KWA5OjZkxkyeiBP3f8CqWkpRCNRIuGoK6v9y6FpGieeN4f6mgZW/bAGy7Lp3qsr0ViUA8UH6TWgB63NbRw6WM1lN1/IG0+/S1pGKu8sfpkfv13J43f+lUdeuY/nHnqFjgW5jJyo+PihthC2lNz15C3ous6kGeP47O2vmHPaTDrk57jnj0ai+Pw+Hrr5cT59az6a00sw/YSjWb1kLRtWbaZzt07c+/RtvPbUO/zw5Y9/8/nzu+RxqKLGva6J4fN5MS0L27YJBANI2yYcjtCzbzcqD1QzeNRAbNtWMI5zr3g8hrsAJ/obsjpkUFl26PA8O9IZu7fsRdMEtpQMGNaXHZt2k5aRxowTjmbR5z8QTA5SdeAQAOlZaaSkpXDAqSNNOGacakgb0IM924swDJ3k5GSisShen5epx02mY0Eezz74MpomKOzRmdJ95WTnZfHmNy8ckee4e8//CtIV/qHdZeEPDx/Ra/dln/Vfnk8I8QFwFJANVAP3Ah4AKeWLQohrgCtR62IYuElKuep/8vn/d+NfxTLqKaXs/B/ppVLKT6WUA6SUQ6SUw49kM/h7x9DRg7nunivJL+zIwVJFt8zNz2HL+u0Ek4O8NP+vIKTaDABd15l79hw0TRU/D5ZVEo/Fqa9uQAjByu9W0dLUyknnH8/iL5bQUNvIdfdcTjQcJS0zjXFTR4OAcHsYX8DHptWbOXPKhezfXUJbi4pMrzn998wafDLNjS00N7YQi0Tp2rMzpmnR2txG/6F9ePLthykrKmftig3UVat99KYHruEPj9xAZk4GO7fs4Yevl7Fr6x669erC91/9yHdfLMG2bGqr6hgyZpBbg8jr1AGhCbr07Ky8aKWSjEbiRnTDxw3BstX58ws7MnTMIDRdc6imuLzw/sP6Im1b1SZKKlwWjuUsPJ0KO5KelUaX7gUE/D7iMRMkLJ6/1I0cTz5vLpquMXryCCbNHAdA0c5iHr7lCYQmaGttp7aqlrqaBoJJAbr36coVJ9/ABy9/Aihc/7yrz6Rrz0L6DOxFU0OzUtgEDI/O5FkTWPLNcp596BUyszPQPbpy5MpK47Y/Kxtar9+L5nS82rbNZ299xYrvVnPjH6/hi7UfIJFUlFSSnpWOxzCoq65HE4Ipx07kpHOP49Kbf0d6ZhpP3/cChd07s3bZeipKKhg2bghdundG0zXuePJmMrLT+fL9b7j3moc595jLeO7hV3jpsdc5YfRZbF23nQ9e/pgpPWbzyZvzMeNxNCHoM7gP2zbsZNFnPzD7tBlEwxGK95Ry6yX3suSrZUqtdnh/5p6tTN+ryquRUpKVk+nKOgghnHsAklOSiIajhEMRRowbSlnRAXr1606v/t1JTg5iGDpHzZ7k0pJjsTj9h/VDSptYJMrB0iqEUMGEbduq2Bw3Sc9Oo0N+B6eIHyUzO4OhYwcy7/XPaW1Rpj8paclOL0qem/GOnjKSU8+f6yrX2pZNXqcOXHjjOURCUaYeN4XP3vqKea99TqfCjiAEpfvKySvIpb66gXdfmPdrLxP/7ZAI4rbniI7/9r2kPEtK2VFK6ZFSFkgpX5NSviilfNH5/bO/WBfH/qM2A/g37FROTk3id9eeTV5BLlUHaxBC0FjXSJcenYmEIxwsqcTn93H5rRcxfe5R2LZNLBJRKb0A6XS6HjV7Ir+77hxyO+UwcEQ/jp49CY/Xg67rbFu/i0g4Sum+MhbPXwoSPnzlE2KRGCedexwXXHs215xxMyePP4dXn3yb7n26EglH2L11L8PHDSErN4th44Zw4/1X89y8J7j+vqsYOKI/8Vic/M4dueiGczFNk4dveYLbLr6X9SsVhtx/SB8eve0pUjNSqa2qIxpVND1/0EdLYwsI1cx11mWnIW1J2f4DfPzGF8rgx9CVJEdWGpqmUbK3jKSkIF6fF8NjcPdTf8DQdWzT4vizjuXauy/DH/Czc/Nul88/eNRAJS+eoGbqGkW7imlpaqWspIL9u0uYNHM86Rlpyn1MCKRt89PSNRiGzprl62lrDeH1qYeoraUNTQjOuORkWppaMeMmGdnpbFy1BQTkduqgurqbWpS0+OY97Nyy2/VE+OGrH7EtmwnTxic83KmvacDr8TBu2hhaW9oJt4fweD3c/uhNXHT9uWja4Q3Ttmz+fPvTnDbxfPoM7IWmaZxx8UmEw1Esy2LyrIncdO7tbFqzlUdv/QsnjTmHpJQgmdlpHHfGsdxw/9Vc+vsL6JCfQ7g9TKfOHcnKzqD3oF6cdN5x9B/Sh/nrPmTyrAl0yMvmoZsf570X53Hsqcewaskavv3kex59/QFuuv8quvXqQnlxBf2G9OGLtR9y9R2XcqBE1bp69O3G7i27WbdiA+lZSjhQ2pL6ugZ30ZUoG0xbSsZMGUVe5zw0TaNs/wF0XadoV7GjFLscy7LZ+NNmNE1QtLsEAezYtBNVEtCcmrVg1snTXWZR0c5iWhpaOVRRjaZp7NtZTFN9E8u++UlpWdk2EoluGAihrGB1XadLr0K2rNnKjeffTjQSIxpR9+yB0kqeuv8FbNti4SeLGTlpGJFwhMqKQ/Qe2FM9t7VNTh/Mv0KgUyClfkTHb2n826md7ti0m5vOu51pc4/ikzc+Jx5T0gker4f2thDX3HkZL/zpVQzDw5ijRrJ0wXIMjzIB79arK6dfcgrXn3kLtm3j9Xnp1KUjwaQgleVVhEJhzr7sNL768Bvqqp2HUUCHjjkUdMln89ptICE7N5P6mkZyO+WQk5fDzs276dqrkNbmNpKSg5QXH8C2Jd9u+ZS9O4rYsGozbz/zAd37dOW9H17F41Vc/pt/dxe7tuxhxolTefeFj3jh0yd5+OYnOFB8kLSMVFpb27BNi0EjB7BvZzE9+nUjMyudVUvWEkjyEw0r2KRn/+74fT52bNmNYegkJSfR1NDM+KmjGTVpBC899jqRcFQt4EiltxOJKchA112vYSlxpCHUvxPXp3RfGbYtMQwD0zLRdR1p2+i6zg1/vIp5r31Oc0ML1997JQ/c+Bhev5fTLjyRRZ9/T21VPROPGcfKxavJzElX/hNSkpaeyrCxg1m9dJ2yMEVieD0cfewk4nGTZd8ebjzLyE6jobaJtMxUWhpb8Pp9GB6DWDiK0ARev48Tz57DwbJKln6zgh59u1JTVUe4PYxm6MRjcSbPGE/fQb35bv4SyvcrX+qklCRC7SF6D+jFvh1F+PxewuEIA4f3Z+/2IvoN6c0N919NY20jba3tHH/msYTbwxwsr6J7n6589cG3rFqyhh2bdnProzdSW1VH38G96D+0L0u/Wc4fLryb175+jozsDNpb27n4+Kt5/M2HePWJt9i+cRcZWWmYpsWDz9/Fa0+/y7b1OxAIMrPTqa9tZML0MaxdvgF/0E9DTSO2rSCkWadMZ9UPa2hxaj7ZeVk0N7S4BkEqq5Du9UOobDAtM41IOEKoLYwQkJyaQpvjudCxcy5l+w9gWzaBoJ9wSDF/hBDOhiCdgEkjEom6taTM7Azqaur/RsJa13XGTx/Npp+3MXT0QFYtWYttqefthHPmsGDeQkJtYff1Z19xOrc8dN0Rrxe/BmTkHdJL5i168ohee6Dj3N+M2um/3YZQXlzBmUddqB52TUknXHHbRZhxkz/e8CiDRwxg64YddCrsyPhpY/jkzfnk5ndQgnFTR1NaVM6WtdtJSg4ScQpi+YUdqSyvov/Qvlxx60Xc/Ls7icdNjjlxKhtWbqL3gJ6sXbGBTl3yGTCsH4s+/54rbr2Y1UvWsGXddtIz03jtq+fYun47hyqqyemYgxU3mf/+N1QdOER2Xha5HXNoaW7l5fnP4PEYfPH+Ah688TEeefleps89mtqqOuprGzj3mEvp3qcrp5x/ApvWbKGs6ADxWJzSfeUYhk7fwb3Zul5RmPsP7cvOzbvda+Pze4lF439TvE4sFqnpydTXNCKEwPAY9OjTld3b9pGelUZTvaLhpqSnoAlBe2u7Ygeh2EzxWBzTskBCSloS2bnZipsuwOv1kpmTwaGKanx+L2bcJCk5iYtuOo+n7n0eIQSdunbkYGklqRlpzD3rWN5/6WMllqYJdyHJys2koUYZwk+ZNYFeA3qwYtEqcgtyWfndamzbZtKM8az47nC2nSh0JuShvT4vpmnSpUdnyooOqMZCj+HCIrquk56ZSkNdk/v3lqPRVF1Vw8yTplNRchBNEwSSgiyev0Th9QE/6VnpfL1xHjf/7i5WLPqJ6++9iifufobRU0ZQvFs5ibU0tzLjxKkU7Szm6DmT2LOtiPOuOoMrTrmRB1+4m5knTaO6soY5w06j3+A+JKcmsWbZemacOJUlC5Zhxi3HNMjAH/DRWN+EGVfNcINHDWDruh1oukbXXoWUFx2gQ8ccKg8cQtd1Rk0ewYGSCqrKD+H1eejWuwt7t+9HSkn/oX3YtXUvljOnCWgt4euMgEBAzbNl2YwYP5Qt67YrEoCTUZ912amsXrqW4j2lGB6D0353Ij8uXMFz855gxXereeaBF+k3tC+7tuzBsiwXTlQwJ87P+Js6WGp6Cl6fh7xOubyz+JUjXi9+rQ0hd+FTR/TaivzjfjMbwr8dZFTYvYBzLj+N6XOPIjc/Bylt7rnqQR6/46+MGDeUluY2pC3xBfx8/PoXSFvxouuq61m7YgPlxaruYEsbadtMnjGBOafPQAjoPbAnrzzxFqMnjiAtPZUb7r2SeCzOzz+uAyQHSirYu2MfmhCE2kL06NdduYadfwIrF6/isduf5r0X5/Hm0+/SrU9Xyksq6NyjgLKicnRDp/fAXng8iin8xl/eITMngxEThtHS1MqDNz2GlMq5rWRPGYs+/4GlXy9n7/YiSvaWKegrHkdoGpqukZmTQXlxBTfcf6UqCvu8Lttk4jHjXKy3vqaBzOx0gklB9xratk1p0QE0TUPXNVUnQRUtW5pasWwbw1CpcszZDHRdSWWE2iKU7T+gFhUJlmlyqKKa/C4d8Qf9pKSlMO2Eo+jas5BhYwe7shKarhONRCnbf8BdmDKzMxACOnfrRL9BfcjOU/7GNVW1vPH0e/Qe2JMVi1a5i/7Zl5/G7x+6lqPnTFbFT+fnAJNmjMO2LPoM7EV6VpobTWu6xqyTp5ORnU5+YR71tWrTMQyDQSP7oxs6LS2txCNxPnrlU+acNoO2lnYOlFTw3LzH8fl8hMMRaqpqee+leSz9Zjnjp43ltafeRtMEjXVN+PxerrztEi675UImz5xARelBNq7eSn1tA30H98EwDD5/9yt300pOSWbnlt2sc+imJfvK3JpXJBSmraWVupo6Zp40jdT0FPwBH32H9GHa3KO4/t4rqa9ucOpTrXi8Hjw+DyV7SgkGA3i8HgYM78e0449G0zWEJtjhBA1de3cFVNQ/aMQAFRwYumIxxeKYTiPghlWbsSy1YecVdEBKm5Xf/+xu3rqus2rJGlJSk/n9+XfwzIMvYUvJnm373A1szJSRXHXbJTz38RPc8MdrlHYRkJqW4v7+9w9eR31tI116dv7V1oe/Z9i2dkTHb2n839Cp/E8dkXCUz9/5ivq6RlUY1TWkVJzt4r0lxKJxMrLSqSyvdDx6Bfmd8zhQXEF9TQNSQu8BPTj3yjO4/4ZHOe7MmRTtLkHXdQYM7cuiz38g3B4mIzudF//0mqJIapriZ9s2w0YPpq66nrL9Bxg6eiCGYfDNJ99ReaDKhVKmHjeFP17/J6LhCL369eCkc49n/YoN7Nm2l3uufog/PncnT77zMIZhkJmdwR2X38/Py9aTnpXOeVedSVJKEl+88zXxuInhMfAHfVhxC4mkoa4BaSuLxNKiclYvWYdt2WR2zGDv9iLMuMVP3//M0LGD2bZ+B7qhM3nmeL78YCGarjFq4nDWLF/vFp8bapvYtn6nkssIRQ6zhnQldZyUHDyseeT4M2jOP2zLdnBpQVX5IYLJATSh8fnbX/HFu1+7nsJm3GTi9LH89P0aR/BNce4bahsBQUVpJeFQhLqaepKSg9RV12N4DJZ+s4JAkoIvgkkBli1cyZfvf0OoPUzHzrnUVNVhmRYer8GGnzaTW5BLVocMZTOKotBbpkUkHKW5oQV/wEe33l0pKypH0wSb12zD8BiEWkNEIlFGThzGrq172fTzVgp7dOaOy/+IZaoi+sU3nc9nb35Jlx6dOXrOJFb/uJar77yUSDjGgZIKHr39L3h9Xp776HF69O2GGYtzzNyjSU5Not+Q3mxYuYmjes6h35DetLW0goR+w3qzY+Nu9u3Yj8/vZeiYwQSCflYtWUMsGqe+toHW5jaklMx79TMA2ppaSUlPpqWphdYWxeVPUFDra+oRmhI/fPbBl5y50lyygc/vUaw0Kdm2fge2tDEMw6kZHTbiERquwmk0HEWCqnc4G0I0GqW8WNU/cnKz3L+zbYftJSG/c0eCyQF6DejBzb+70804E1DUlrXbVJYpYdfWvf/4heM/DimQR1Aw/q2N39b29SuMtcvX01jf7Kad1i+oeQ21TbS1tJOcmkQkFHVfs2WdevBj0TgnnjOHUHuYZx58GV3XaWlsoaWhBcu2+fMdfyUajqDpGk31zSz4+DtVsPUYHHvKDAJJAdYsX097a4i25jaeeeAldEPH5/OiaxqpacmcduHJyg+hoZk3F77ITQ9czWt/eZsuPQvJzMlk2cKVNDe2ULb/AHu2FwGQnZvFsacew7qVG3n/pY8ZPXkEOzbvYtSk4dxw31XMPGEa0UiMHn26cbC0in5D+lCyTz1Mu7ftRWjqwU1wySWSLt0LMDwGSMmXH3xLPKagpNpDSlhPaMJpcpOE2kMIFBsowae3LAshFO7s8RgOPVVXNEZd/X/Pft2QSHLyskjLSCWvcx6h9hA5HbPBqUeAWoxW/aC0oQ5V1ICA/C75DBqlotQuPTsTCUVUxmFZ1Nco3Zv21nZCbWE3y/vwlU+xLOWFMGzsEGyHbhqPmYRDEQ46wmuHKqoBSE1PxeMxWPL1MvfcF1x7Fjl52fQf3g/DYyCE4PxrzkQIwYHiCnRdR3fqDh0L8rClZNYp01j9wxqOnjOZlz7/KyecPYdvNn/KpBkT+PSt+Syev5TMrHSGjhlEXuc83v3+VTw+LwfLKwE46bzjOWr2ZAq7F1DQNZ+nP/wzM0+exukXn4wQgsGjBjLxmHGsX7lR3aexOCMmDMXn8ymmkNOI5/V52fjzVg6WVSElDBk9EKEJPB4PmqYp+RXTYufm3Wi6hiY0d55t26alodW5xrab4Zmm6ZADfkFD1nSVXQhBY32zuiekCq4ystPp1a8nIOnQMZu62gZX4ymxiaRlprJ22Xr+fMfTzB15Bm2t7fgDPgp7FLgZRCQcxfCogGHo6EH/iKXivxwSgbS1Izp+S+PfLkPoNaAnY48exb6d+12WwqxTj6HqwCHKisqor23kQMlBl3JXVnSASCiK3+8jt1MHPn3rS6SUFHTvRFNDM4/d8VfisRiBYIDU9BQOHawhNSOZ1qY2RwRNQ9pKeEzaNhVllQwaMYCk1CQuvPE83n3+I4r3lqro8GPlEFVaVMa2DTuw4hbPPfwKB0sPsvjLpdiWRag9zLoVG3jzmfcx4yZTZk3gzEtPJb9zHq899Q6v/+Vt3nj6PabOmczFN53PDefcRiwSJZAUYNfWvQiBWziUtqS5QbGPIpEIba1tCAG+gJ/tG3cRj8WwLcUx9fp8xONxpdUEIMAwdGwp0YTAEg5t1ZEeEChY7UBxBR5H6VPa0hWWk0iam1qda+Mj1BZm/85i8gpyXQy5oDCfilLVwa3pGjWVtcTjcfoN7k3toXpK9pQikao+4kBp6Vnp5HbMYc/2fWTmZBIJR2iobcTj8SAEpKQlU1ddz3ef/+BmJ10dH4RwKIKUOEV7OOOSk3n1ybfx+b3E4ya2ZfPDVz+i6YJNq7fg8XqwTJNX/vwWlqUsIltbWklNT2HyzAl8+vZ8evbtzmW3XMg50y5l28adZOdlUVFykO/nLyW3oANtre1cd/cVjJ4ygj4DD6sRvDL/r+zYuIvfHXslRbuK6dm/O69+9QznTL+EJQuWE24Ps239Dnx+H5FwhB+/XYktJT98vQyADas2k+tQQDM7ZFJaVE6H/Bya6pswW02SU5LoM7g3u7bsddzWNHLyc6iurCEWibmfQxcaKWnJtLeFqDl0uJclMc+g/q0yLQ+WbbmBgqZpCCkIBPwMHTuYNcvWEw1H2bezSDH2pGTO6TNZMG+RghQRWLZFU32z29gZagszcvwwtqzbjkBtUCkpKbS3tVNZfgjD0NnrBEb/1CEB+7fFIDqS8dvavn6FUVlexc8/rmPIqEEMn6Da6xd8tJDqyhqaGloQCIaNH4I/4Kds/wG3wBqJRgkG/KRmpNC5R2eCwQBSSvwBHyPGDyUeN2ltacPwGJx9+enMPHkayalJzDxpGudeeQbrV24iGo1xzuWnk52bRVtLGx++8glm3KT3wJ6MnDiMZx96mYtmX0VLUyvz135Idm4Wg0cOoNeAngSTAlSUVhII+vnwlU844azZvDL/GW69+B5OGHUmrQ40NWzMYL545yu+//JHvvn4O6ora2isbybcHmbqnMnMOGkaKWnJLj3U41Uqk+H2CPGYiZQK+inaXYxlqlpARlYGw8YNxjAMcvNzXEG6jOx0kBLTtEhNS3F/bts2cdNE09QDY5kmhqEjsV13K2lLaqvqFAbf3EI4HEEIwaGKauoOKWOXAyUHEZpGQ20jOXnZICCvUy5Fu0qoq6nHH/C7bJW0TGVUH4tE2bJuO9FIjEEj+tNvcG9AbYJSQl5BriNW52QfUlK6v5xoNOZSZS3LxjItXnniLQSC5NRkklKSMAyDFd+tpvpgLbqusgDblupv0Rgxfihrlq6jqaGZSDiMQLBvZxFXn34zSMngkQP5+LXP+PCVT6iva2T4uGHEozGK9pTQ3cHnAV567A1OnXAe7774Eds27KC9tZ2zLj2Ne697hNJ95UQjUVLSU6iqqGbqcZMZOLw/R8+ehAC69eqiJEMkVB+sQUpJZZnKNKrKq2h39IK69+3GvFc/U/IrjgBgLBpj9GRFBx02djD9h/YFFInAdq5JohYEYFsWZtz8xZza5OUryRBd191np70txNrlG5SwYChCZocMkFBbXc+iz35QUt26RmpGCkgYPn4ImlDU5Q4dsyneW4KUklMvPAnbtmlrbSOYFMDr8/Kn1x/ghU+f+kctF//FECC1Izt+Q+O39Wl/hZGSlozH62HZwpVsWr3FhSUOllZimSq62eNETf+R3rxvVzHNDS1UlFSQkpbMxGPGKVnfQ3XEY3GXmtlQU8/WdTtobW7j9ItPZtHnP1BZXoVlWnz6zpf8+O0KNqzaTFq6krYOt4cZMX4oq35Y457r97+7k4uOu5on73mOEeOHMmzsEBCCG+67im0bdvLBK5+w4ONFLP9uFZZp8c7zH/HK429SX9tEv6G9CSYHmH3qDILBAEkpSTz8yr3s27mfhZ99z8aft+DxGAwY2pfufbrRpVfnhOQMnbt1AsDj8ZCUHCSYksSVt13Mvp37EZrgpj9eg9/x0I3HLTQH58/OzULT1IKaKDTatk33Pl1Vk5imkZObTXJqCpZpkevo5wsUVGBbtsKsncXJF/CRlBxUv7Nt2h04qrFeFWGRMH3uUQwfNwSQ1Fcr9eCGuiZ3waqqOMT6lZvQNA1/wE9+YR7bN+wEYMrMCS68lYC0howeyOkXnsSxp87A4/MQCAYIJgeor2mg1TFAOvV3Jzi1JfXhPV4P0pbk5GWzYdVm6msbsUyLRZ8vIe5IRURCEZJSk9izbS9VFdVcc9cV3Pv0bRTtLEJzbCpvOPc2d+6rK2uoq2nAtmyyOmSi6Ro7Nu5k8RdLkFIyYFg/GuuaKOjaiWULV/LZO1+ycfUWMrLTKd1XRm5BB0dCwsAwDGqq6ggkBbBtJVHiNmWgZCB69O2mYMNIlAuvO4esDhlUV9ZQWV6Jbds0N7a4zKIElVplCB6OPXm68sv2KN0pW9rk5GaRnKpk1w2vyiISfQh9BvXEilsOHKnm2x/wEY/GVY0Oye6t+5Qktq7j9ftorG/GjJs8df+z6pl0oMFgUoAn7njabdT8pw9bP7LjNzT+7TYEwzBU9KHhMmESi6EbITqbRDAl6PCoBQLhLlYdO+cxZvJIh+suaWtWxbnO3TqRnJrEx2/Mp7qyBtu2+cOFd3HoYDW2tNENHTOqoAfD0Bk0oj+TZ02gqaGZd1/4iIJu+aRnKpOc868+kx79utNY18Sgkf2ZPvcoMrMzqCitVHz+uMmCjxaSl9+Ba+66jEWfLUZoGg++cCdJKUmE2yO8+uTbhMMR5Wj12Q+MO3q0WyA8avYkbnnkeqLhKLYl3b1PReWClLRkrrjtYtqa2/jglU9obw0Rj8a566oHCYciCKC5odldW0r2loIQTJ4xHo9Xdf1apkU0EkM3dGzbprqqlrYWBaWlOsYzPr+X0y8+xTFp17jmrsscuiEkpSYBkJOXTXlxBaBkHRLF5p+W/Mz6nzbh8XqYc8YsJeAG+AI+vH4vZlwxXXwBHxnZaUpgD0BA116FbgOcrhvuIrfwi+9Z+Oli4tE4lmmSnZulFlABufkdGDp2MD6fFylh2LgheLwGV9x+Eba0sSybfsP6EkwOquzBshkyZhDtrSHqaxoYNHIgJ59/PLNOmcZxZ8ziuDOOZeL0sUjbZtbJSgvSsizqquvI75zH1OOm0HdQb95e9BLnXHEa/oBiYTXUNTmF1zxVOwEa65vIzstGSsjITCMSijDntJlMO36Kgvc8OqAW85TUZPbtLEIIgRmPuz0zLU2t3HbpfRR07UTtoXqaGlqQSKcucHhDEEI4PxN4fB5VA3CaGxtqGxX81h5m1inT8Xo87t8ZhsGebUVEI1FmnTLd9WSIhKNIKZk8cwJej4dYNEpaRgq2rSBHnzOvHue9ktOSicfiNDe2cOhgNX++86n/4arwfzCk+P/lhvBvV0Oor2lw4YmxM0azYtEqFXUN78fe7fuIx0zFDAFMp5CqGRqX/v4Cfl66ntaWNsr2lVNbXUdmTibh9jBNDc0kpQTRdJ0Plr7OyePOIdQWpme/7pTtP8CEaWPQdZ2D5VXs31XC6CkjaGtuZ+Fn3wMw9qiR1NU0UH2wBp/fxxfvf00wOcDJ5x1Ht56FamO56B569O1KWkYqfQf3ZubJ0zju9FlYts2GnzbTtXdXKspWc+60SxUGj6SpvpEpsyawd8d+fvx2BckpSSSnJNHeFmLZwp/YuHoLbc3txOIxFXk5+LBhGDQ3tlBf04AQ0NzYgs/vJRKOYMcOF+GnHjeF5d/9pDZKW6JrQmHYQkkvmxIqD1S5lEEppVuE3LezGN3QiMctli5YpvBjy+LTt750zhUl6mDZaZmpBJODlO8/wJRjJ7Lmx3UIIYhHlBJtPGbyzbyFbiNVJKTmd+fm3W69okPHHHZtUWwUTdd554UPVX1EHJbt2OnIdScaszShkdUhk6b6Jhrrm9m5eRdP3/c88biJlJLdW/YSCYV59fG3XeglLSOFU393AvNe/YxpJ0+n8sAhYtEYF1x7FpvXbGPN8g189s7X9OzXnV2bdytXOeCh3z9O7aE6li1cSUNdE9UHa/jLvUq9ta2llXBIWVhee9flfP/Vj5RI273nklKSiMfjlOwpQ2iCol0lIGDx/CWuVlUgEKCtuZ1e/buzf1cxtqMzFY/Gaap3On41QSQUYefm3VimSUGXfCocuEnahwXqEhlVNBLj52XrVQFa0wgE/EQiEQaNUQy1Fd+tZtzU0SxbqEx0zrr0VL5472sGjRrIwk/VvY8jiCqlqntEY+peLNlb7sCBSmaecJRAwEc0HGX0pOH88NUyd3Pq3rvbP2ax+C+GQCDM/8cy+s2PLj07k5QURNqSrWu3c/ScyWR1yGTXlj2kZ6q2/0kzJqBpgnjMJLtDFgJBv8F9mTBtDBUlFSCgrraBSCRKanqKY0uZRGNtIz/9sIa8TkoWoNmRW6goUbTI8v0H0HRBLBrnzMtOcdgugwkmBdm/u4TzrjmLDvk5JKckM3nWeO6//k8Onm2rtv0Dh1i7YgN7tu/jqw8X8uhtf2Ht8g3cdN7tREIRph0/hWgsRjA5iNfroepANT9+sxK/34+0JW0t7bS2tCE0QXJqEvFYnGg06tIB87t0VN8lWTU3bVm7FcPjIRZTCpcCgcdjcPTsSaRlpLF5zVb6D+kDHI4APV7DWdxtDI/uyiFbpuUW2BO4Pwji8TgTp48lkOQHqbIOf9DPwJH9EAJS05Ip3lNKWVE5Ukp+WrzajSjbWtuVGfwvu2qdkcCvfQEvqakpbFi1WWHX4ET/trsRFHbrROdunfB4PYpZIyApJYloNMb6lZsItUfQNMGUWZMIh5SMyejJI5S+FQLLMrFtm6TkIM0Nrfzw5Y/c+ugN3PjHqynatR8ENDU0s2vLXvbvLqF77y7s2baP5LQUbnzgGmadfAyjJw/H5/dhxi3+9Mp9+IN+ag/VMW7qaKoO1LBv535Asmf7Pras3aaYV0vWYpkWbS3thNsjFHTthG3ZFHYrQADxWJxQWxiPYdB7YE+lvrq3jK69CpUiaq9CgskBlUX5vU4mJIjF4oCgsuKQmzUryChBHFDZ2/QTjqKhthFd1x0YUdWTklOTsSybaCTKD18tw7bVJrtkwXLa20K0t7STlp5CakYq/Yb0RmiqWNze2u5sEIKc3Cx3XtscemxTo+qmrig5qO4zp8Zw2R8u/IeuGf/pkAIh9SM6fkvj365TednCldx43u2qqJrgTf9CACyxSOiG7nTNBgm1hwkEA/Qf1ofKsipC7WGaG1tITkvmjItOIi0zjfnvLaBkbxm6oTNmykg6d+vEx298zvipY/j5x3VEIzE8HuX29ea3L3LRcVfR1tzG6MkjWLN8A5NmjCfcHqamqpbiPaUKSrnoZLZv2kl1RQ2zT5/J5X+4kAdufIzjTp/F91/9yJfvL6D/0L5sXrONpOQg/Yb1Zf2KDeiG4TI9gskBtZgLQdDpYg2HIzzw/N3cd81DZGRn0Hdwb5Yv+gkzrhaChGmNEJpbYzE8hqt+apmWYoEA3ft2o7K8ilg0xtTjJ7NioeoKTlxX6TR/xeOqsGw5tQIkrqMaQmBbFrmdcjlUUY0QMGB4P3Zu2o3H62XKrAn88PUyNwpP0BPVJqRj2fbfSB+4I3GeX8xzIhJOvL5rr0JK95UTTA66Tl43/fFq+g/rx2UnXOfKOyRYMxKpaiWaTjweVwVc5zzJKUm0trTh8SpGU4++3TlYVklufgeGjBmkzOClZNpxR7H4q6XousbICcPZ+PMWBg7rR1aHTEr3lTNs7BA+fXs+SHjwhbv57O0vaWtr54JrzuLlP79Jyb4yF8pMz3Q6xcVhOAcpHXkO3aXdTj1+Mku/XkHHglwFZ0qJoetuttOxcx7VB2sOvw+CnLwsaqrqKOzRibIixRaLx+JomuYuyJalNlbl4azmuVuvrpTuV8Y4/Yb0YcemXWRmZ5CUEqR8f4Xby/DLYkYCtPT7/fj8XixLbXSJudINnaRkpQysaRrT5k4hv3NHV3ixt2OPeiTjV+lUHjBA5nz44RG9tnLw4P/Xqfx/6xgwvB/JKUmkZ6XRf1g/AAyvQfe+ihOfmpaCx1n8eg/sQSgURiIJh8OsX7mJ6qpauvTsTEpaMt17d+G1v7zDu89/hC+gvFOllKz4bhULPv6OeNxk7YqNyjDckQVubVHUztT0FBCC5sYWklKCrFuxgXUrNlKyt4zzrzmLOx6/mevvu5LeA3qhGTqRUIRIKMri+Ut45JYnCAT9eH1eJh4zDlvajJw0jPUrNmDbkoKuh6WAk5JUtqDrOlkdskjPSseMm9xz1QO0t4WoKD3IkgXLGD9ttFP8TdRKYMSEoa4IXU7HbAJBPy2NrfQdopg7Q8cMonh3ietzsPzbnxw2zQC3o9Q0LSyp8GbTtFQjoC1JTU9hwrRxCE1zCtCShtoGh/MulVSCZRONRln0+Q9/swn0GdTTpTzqhk7AKXIDLt6flpmqXM6cOdF/oeCJVPWKDh2zXWnucChMQ20j7W0hHrr5CS4/8Xq69CwkNT1F9UUAHp+HLj06A0IxYoCOBblOB7FHsWOcDSsWjdPU0Ex+YUfC4TArv1utrmNeNtOOn4Ku6Vx/71XkF3bEMi0GjRhA6b5ySovK8XgNtyP983e+ZMPqzZTtK2fxF0spdfpH+jrsqVBbyP3uAoFhqEJyPBoj1BpG1zUKuuY7kbrNwfIqt8mrQ8cct0isZKmlEm8Ualno6XTSl+9X9RtN00jPSkM31P1hxi1387CcgrLQBCX7StEdeCkzKx2kyrj8AT8AyanJSPm3BerEvEhp09LU6hrg+AN+pShgS+UdrWaUxfOXsnzRTzzzwIs8fPMT/6fLwf9gCIStH9HxWxr/dhvCnm37aGtpp2uvLmTlpKNpGimpyjFM2pKJx4zltIsUva14d+nhG9WWDtYp2bJ2O9FIlF1b9zLu6FFuAVXTNXRDNeWE2kJu4w7gUvd+d+3Z3H7ZfZQXV9B7QA/27dxPLBpn8MgBGB6dfkP6MH3u0Txw42M888cX+fHbFWhCMHryCO677hEGjRxIVcUhvvrwWx568R6WLFiO1+ulvTVEcmoKaZmpFHTp6C6gtnRExQyNAyUVSvHS0cFPYL/JKUns2LiLYFKApOQgSclJCoveWawgM03QZ0BPR8/fJpikFtot67ZT2K3AzQhMpxt624adNNQ1qkxDE9im7dYRhKMaGw6FWbVktRuxA8SicQC1eZoqM0lo2di2Ta8BPdA0JcEdcDbgaCTmiqVlZKcr+qaElqZWd7EHxWTatn4HhsdwG61qquqoPVSnPKSTggweNcDxDTZpaW5l67rttDS3uiyWWDRGWVE5fQf35qxLT8Pj8SjIxbnOyxb+hGEYSCSTZownEo7Sf3Bvp9dDLZw4GcVpF51EQdd8vnx/AdJWm9zYo0ZheAx2bt5DUkoSvQf2pL5W6UelZaSyZd12MrMzSU5LpmhnMT6/j9SMVAfpURG91+tRzCd18bBM9T01oWCfYFKANOdvKh0fbJ/P68yBOqTz3+of1wG4cJxtK5KAZdogJRLbofOqDd+2bDyGx5lDRU8tLzmIpmscqjhE6T6ny9zvdV6juT0qAoHQBB06dVAsLk1zYNsYWR0y3Xus75DeZOdmIxCU7C2jvTXEmCn/guBbgrD0Izp+S+PfbkMYP3UM/Yf0Yeu67axcvBpbKnxe0wS6rrH4i6VKZ9/h1ycMYEBBAElJQSXWdflpnH3pqRTtLGb4uMEU7SoGoWQtcvKysUwTj1dtApNnKuaNlJJP3vqSXVuUEXptdT2xaIxoOMoxJ04jOVU1AP3horuRts281z+nrrqe+tpGqioOsezbFcRjcbr36UpbSzs7t+xRNMNOHZCWpLWllZknTmel09UrbWUoHw5F3AKtAJe6l6B0tjS30lDXSFpmKpalIjTbsmlqaCY5LQnbttmzvchlX61estbtRD1YXoWmaWTnZim9pGjchZzMuHW4oOycXDGsDOVYpyvYAaEayhTTSLhwR2IkFqSSfWVYlsWhimomHzvRhbFwllrlg1zusJhS1MYlFDQlkTTUNuIP+Ag6ks3CUWXt0a8bE2eMY+/2IjRNMcr0XziY2U53sxCC1IxUSvaU8vKfX0cIwf49papBz7ScbAou+8NFFO0qprmhmfScDGLRGNWVtZimSXNjM4/e9hSfvjWfv9z7PEkpSWiaxo/f/sT0uUdhxk22bdhOa3MrXXsVKmkIIVwaakNdA23NbcRjcRditB0ZEcu2CUciRCOqxoJUzYF9B/d2BfpC7WFam9uwExAaUNAlH2lLFx4E3CxBBQ2H+zPS0hX7JxaLu4t+QlTv5PNPAE1tTpZtOfLa5Y6JDu7mX+v0mQB0yMt2+hZUrenA/gq3mJxfmI9l2uzastfVzTp0oNqRkDkM9W7f8A/xm/8vh5AC3fQc0fFbGv92G4IQggEj+zsRieYoVqqFzLLUjW7bNsGUoIpeHK65pguyc7OYffpMhCZ4+9kPePt5hSF26pqP1+tBE4JdW/bSWN/ElGMn0aFjDpZpsWXddrXp6JobtfYf2sexO9SYPHM8B0oraG1upVffblRX1iA0jSGjB5KemUZ+51wystPRdJ3Na7ayd8d+uvfpQjDo5/cPXEtySjLrV28CYPParXTIyyEQ9JNbkEt7a8h1BJNS0rmHMmvJze9AanoKuq4kCzp3K6C+ppHRk0dgGEp+oWvvQneBrXIKjADRaMztHbAstWlGnR6MRAd0AtIBXBjF6/Vi2ZbyXtAVDVKisOeYU9z2eD0cf9axyqFNE8rFzYGtEou0lLD06+V07tbJXej6DurtsKKEu7FGIlE0oXyVE4tMm+OBYFu2y8nfv7uERZ9+TzQSJSk1Ga/fS/9hfV14S4m4GZx47nGYcUsV+i0LkEyfO4XsDllYlo3P58OMm9RWKnqtbdt89MqnmJaFQNB7QE/X9Gj4+KHUVNZy4fXnMmrScCSSD175hJTUJLr17MIxJ03j+y9/pGh3MRfdcB4er4eW5lZF79RVFqrrOrqzKCOhobaRbr26qMUep8aiG+zasse5hzV3g0xOSeKiG86jW68ulBSVI4TS9Up01ydgKBU0SHe+I5HD85xQgwXF9Pryg29Ux7LPo9RhDV1lTM6OLoRTMwJXEqOitBJd1+g3tK8bHCgIyqaq4tDhz2ErWm9TQzMS6Vimqqyn98B/iN/8fzMEwtaO6Pgtjd/Wp/0VRtGuYr6Zt8iFKVSEY7rwSeJnrU2tWJblQirSVhz4j1771I1O+g3uw6BRA3nrrx8QSA5i29J1VlNm8zpen4dISEVs2bmZeDyKidPc2MKsU4/h+nuv5NY/3cimVVuIx0wmHDOOG++/muvvvZJr7rpCUf2k5NkHXwYgu0MWYyaPZO/2It5+7gNee+pt9u7YR2ZOBtKW7N1eRO+BPYlEolQdOHS4uJwUICsnk4qSg5hxk+qqGqVM6kAkB4oPYpqmipId+8uSPWVuJuEWZHGAhV9cP8AVUUtEqkITLjyj/2Ih8nq9Tpe0iuwTWHO4PeLw0uN88vrnbi8CElLTVBdySlqKywIKtYdcCELTNEqLyhUckpmKz+/BMHSnd0Q/LKjnMGaEODzPrpc0qo7R1tyGGYuxY8N29fmcyDUej/PFO18rL2H7MATW3KD6KkZOHEaOo7a6ZMGPRMIRDEPH4/OAVPLT199/JSlpyVimxZzTZnDuVWfw8p/f4KRzj2fDyk2sXrKWvoN7U1JUzg/zlyKEwB/w09zYQlpGquqM9/vIzM10N+OEM50tFaSSlBQkPTPNnYuBI/sTi8boNaA7ALqmBBTTs9J586/vsX93iWO1KdyCf2Ke+cU8jzlqJAhobTo8z9K53xP+HL/s2fH4PO5mKhCOR4Z031P+gqwgpWTrpt1udpYQuZOJRjqUGq3h2Hkm+ogQ0oUQ/+lDgmbrR3T8lsa/3Ybwy5GgQyYO27bdKErT1KIoEDTVNyOlpK6mwRXwskyL4r2lLF2wnKSUIA21Db9gK6mNp7G+iYysdLI6ZKimGokrt1BdWcPnb33Jsw+8xNlTL2b7xl0IoaK8acdN4b0XPmLpgmW0tbQxYdpYDpZVccvD13Hj/VfRsXMuIJgyayKHKmoQCEZPGuFAKIK1yzeQkZnOUcdOokffriSE56YcOwHLssjvnEdqeop6AJ3oEqEewMoDVcQdT4S/YaA53aFqCBdScF8jVBd4AkrCKVDrzkZrGEaiL0rBL45CpoTD7B1n8dV03ekaV1LJaVlqMWyobSSYHGDomMFk5mS6BXBb2rS3hWhtbqO5sZmGuiZVOBW/mGfbZtiYQX8zz0JTuHtCaiHhD3zFmBYWXlSDR6hsQG0uuPIYiXkGwd4d+2huamXPtn001DYq9dO2CJquk56dzukXnYxhGGzfsJN7r36Yk887Hl3XaKhtYMS4odhS8tgdT9Ha0kY0EsMX8GNbNrNPn8GMk6YRCUX4+I3PqT5Ygy1VBltbWessvqqoHkwK0K1XF5CqrtNY30SfgT3xB3zs2LgLTdfYvWWvs7GrOs7BUmUFe/i7ONfKlq68uBCH53nNj+vd7vNEnSxRU1MMLPU+CRkLwL2/EsGEpmn0GtiTQMCvqKspQQp7FGAFk4m99jax2cc7r1NzgXNvIGD31n306NsNy7QwnSOxWRjGP38ZE79ihiCEeF0IUSOE2P6/+b0QQvxVCFEkhNgqhBj+q38hZ/xLNgQhxH1CiINCiM3OMfsXv7vd+eJ7hBAzf+1zR0IRVQizlcuX4TF+gUWrByIBWkspVQQmVafmAadbVjd0RowfisdjcMoFcwkmBRCoB0Bh5arBJ1FQLujaCd3QSM9Mx7Ishowe5HYH27ZNS0srvfp358Y/XsObz7zHaZMuwLJsykvU+XLysjEMg6ULVvCnW//C/PcWoOsa63/axOsLniMjJ52qikMYHgOPx0vnbp1oqGtk6TfLKdpdwtDRg0hNT+WL9xY4i/4hWhpbsR3IxDB0UtNTMDw6hd0KyCvIVYu5oauo3udl4Ij+TvFURf+akwHoDsbsD/jU34Hbh5BYfCVgmnE0XbhieAquEQiJE/WLw53jzlwV9uhMRk66iysbXoO2lnY2/rxFuaQlNi2J83l0hDgsNY5zfRML/u5t+w5LMDiYedQxOUpAX5qmsazYx+KiICZ/W8dI6Pgk5lloSnbEtixikZgq4Hs8dO7WiUDQzwlnz+H9F+cRj8eRUvUirF2xkevvvZJXnniLL977mgHD+rob+dQ5k1ntyJd88e4Cvv14EYXdC7j8lgtJSk1C1xRM0qlLR9eVzjKV4GHJ3jISF08IwZ7tRUTCUSK9+hA7/WykUPMpgbSMVFLTUtQm6PQYJKAitTELle0KDU0XhyNzB2JNaCUJTXPhJMuBxRK01MOkBrUJ4Vyv3Vv3ujaZkVCU4t2laJEQxprViM2bnIz48L2TgJbqquvZs22fyjwNA8PQHdkUSWaHrF9pdfg7hgTN0o/oOILxJjDrv/j9sUAv57gMeOF//Pn/N+NfmSH8RUo51Dm+ARBC9AfOBAagLtDzQohfNedKz0pTdESHQ23GTVdSV930zpLmRF+JG1I3NDedRko2/ryF1uY2Pn/3KyrLq1wYQhPCjYITYl5SSuJRE9u2aG5qYfOabfgCXjweD8edOYuMzHT27dzPsw++TDgUIRaNkZKWzIHig6RnpdPeGqJjQS6b127jqtsv4br7rmTc1DGU76/ghUdeo76mgaY6pfcihTLi0XUNQ1fS2h06ZtPa3IoZU/aVwWTFJkoscIrFko5l2eQXKj66tG1GTRwGKKbUzs27nAUkIf0hKOjaiaSUJAfXNmioaTgMX6AW63jM/EVWZTvvZ7kRpdAEUqjFp3ufbkoTx8lEDpYepKGuUc2NrtGtVxcX2gu1h5ESCroWkJWbCULRIM24iWmaTubhYN3OPLe1tCNRJjOJRbC9Nexg3TpCgKYLtld7eWxZspv9mJbKNhpqG5zyNa74WoKLb0tF2YxG1cbQ1NDMW8+8Tzgcwefz0r1PV4SAXZt389cHXiIaibF66Vr8AT8Lt35G7wE9KS+pILdTrrtpgaC0qJyXHnuDtuY2t+6RsI9MLNC6U/ORqIw2gd/rho42ZixyxixwitNISWNdE02Nzdi2zfhpY4HDUuMKm3cidIF7X7tZpLPAS2nTq393vA5cZMYthLPhW6aJQAkKqsZEXAls3dlE1HWzwOdD+PwYLz2HVl7uNi8KTZA/qA/JKUkkej0SDY2maWLGLUe+XFBRcvDXXCKOcAg0Wzui478bUsrlQMN/8ZITgLelGj8D6UKIjr/SF/mb8X8bZHQC8KGUMiqlLAGKgNG/5gkOVVTT2NDkNrskim22bbtQgm7oij/vyBgYhkGvAT1VVKWp5qpEqp3gzatmJc290TVdx7Ist9tVaEJh3hLGTxvDzJOmYcbj/P6BaxkwvB+GYdBvqGKDCKCuuoGRE4bRUNvAy4+/Qdn+A4TaQjx621M8cdczLF/0E7Zts3b5eqSUHCyrBKeY6Pf7MDwebGdB/v7rZSoC1NVnGzZ2CD37d0c3FE5vS8nBUmVYsmbZBofiBz//uN4tJiYW23gs7naQVh+sVvitVAyn5qZWhFAPdMJyElTHrMfnJRaLOWwVC+HaLx7GmHdt2eOsOwoKMk0LXWj4g35My6JoVzGSwzCfrmscLDuo/IIt6dIYPb8odKp51sjskMHAEf2QlmTKsROc2oaaI8u06FiYR3JaCralOq4T86wnahGJhUxLFF1VM52m6U6tSRCNxBBAqWPckqi/RMJRyksqSE1PdeUfLMsiEo6wbcMO/nDR3QwfP5S8TrmUFytHOGlLps096nAQIpzmLYEqLmsa9lFHO9RS5151rltmTiYTpo/Ftix877+D78qL0UzTYfkoqCeB6S9f9JNTQ3AKt+Yv5llKpFS/S0iSO18L4RAoQqGwCxPFIlGlRRSPozsNg5qmEY/H1TwLReRIwEcAWnIysWNmqQzQYyjTHY+B7NOXytwuNDe1oDn3qZSHdZU8Xg/B5CBHz57E2KP++bRTIQV63HNEB5AthFj/i+Oyv/N0nYADv/j/Cudnv/r4V24I1zh42OtCiAznZ0f8xYUQlyUucG1t7RGftEvPQnJys52I0rnxHbaE1+ul35A+BIJ+FdE5NougIruWplYXgkiwOJDqIczJz6HXgJ7OpqBu7tMvOsnliHfu1ompx01RtLuqWjKyMpASThp7DhWlBwmHImxdu50xU0aiaRqRcJjWljauuv0S/vCn67ntsZvw+b307N+dgi6dVENW0M/UuUcpfN9WUappmrS3h8npmE3Pvt3J6pDpPkhItbmtXb6eHZt+odsjlemJwmQlvQf2IDVdNegZHhUtJqJhUNx2aduuumVCRVNKSdfehW4hUk0UTJg+xr0OOBCPaZpOhCvchWbg8H4ujp84n6ZrjJw41MWLpaV+pxvaL7Bp8Qu2S9yR8XZ8GTSVOTTUNLJj0248Pg9LFywHlN9z115dEEJwoPig6rOwVTYhNI2j50xypTcEuAVm2zlnYvNXC7baKNIyD9tvJhbzKcdORBOCkROG8epXz3LK+XNVnuGwbn74ehlvP/uB+lwCRzHWYMWiVQoecSBN1XimY110KbJjJzwzZpDbpRN5BR2c76oaxDp368TaZRsIJAXIzE5HmKa7ECdYQ8LJ8nRDd2HT/zjPSoFWUNA13+0YTkBtIiE/onYH9XpbYsnDBASkkj5PMIJst96guRmk0d7K0VorUqrrntic2LULsWSx+70VTVYp0yLUPLe1tLNs0U/89AuV4H/m+DsyhDop5chfHC//nacS/8nP/iESE/+wDUEI8b0QYvt/cpyAwsB6AEOBKiDRanjEX1xK+XLiAufk5Bzx59qzfR/1tQ0gwevzKuMaVJQVj8fZvXUv4VCEQxXVZGZnMmBoX7UYOBiqP+hzo7WuvQoV31rXqK+up7SoDNO0MDw6bc1tLJ6/1OWEC03w/ZdLEcC+ncWqcQsFLbimMwgmTh9HXuc8bFvy5Qff8NcHXuKJu57lybufwbJsiveUMvOkqViWRTgUITkp6D6Ahq5ofqMmjaDqwCFK9pXRWNeErmsU9uisOkwdkQC3aOwsuoCyPrQle7fvp6WplXhcpeY4+LlmaOgeHSlth9qIu4iAwuXbW9rdGZNOvWDFd6uJx5WVZDQSw+vzKnqix3Aa+tQmULy3lGgk6v5cotg9Py1e4/DxVWSrMhuBZdt4DEPVYhwJBa/Xg9fnJSGWZzvmRF6fV/WWxEw3ewmHIlQfrHZqIapw7PEY7kK/fOEqld14PSoLdLF2VVfpM7A38Vgcn9/nmsqkZqS4dMhERL9i0SrSMlL5/qsfiUXjHHPiVCVvgeDcq850C++9nM1ebUI2E6aPwTRNjp49yd0ke/TrQWDlj2iN9dh33UHTTbfhLyhIPHN4vB52bt5NPB4jHo1TW1XrFpMzMtMQukCMHMnEK893C8gubCqdvgNDc9g/Kjv0OJ3uv8yKf/mgJu5vIQTSkofn2TEW8ngN4vG4ohpL6dKQPR6DWDTGys8XIx2JEd3QVXOdT51TEwlBPQ9CaE4xWX0mr9+LFTc55sSjj/j5/7WGkALN0o7o+BVGBfBL4+gCoPLXeOP/OP5hG4KUcrqUcuB/csyXUlZLKS2p8tFXOAwL/cO/+IBh/cjtmANCdZ7GonE8Ho+KTG0VPSGVd2t9bT1Fu4rdJp7UjBQyczLJzs1i1snTXecxwC2iJlr5bak0/K++41JGTRrO/l0lDrSkUujP3/kKXddVPUPCzJOmcvblp7F2+Xq69+lKIOB3rQ2tuOWYmJsOx9+Dz+fD4/Ww4ONFLn/cH/SjaYJt67YTCProM6iX4vGjXKtwspqBQ/vh9XnpMl7n2GcTEbpE143/JVrUNLU4WraFtBTW7/F6FWtIE270BwpyqK9tdBkitgMZ/EcIKUGVRAgXbhNCFSQBF5bxej0Kz/boDlRkY3g8bi+AJlTkaNs23fp0pVuvLsRicVVwdjaHBJU1Fo2538u5PwFJJBwlHoujG5qbZRkeHf0X2HxaRiqjJo8gUVtycW6Bc31h9mnHoBs6JXvKOPHcORi67mRlODBOBrZts+6njdx8wZ1ulPPz0nVk5WTi9Xsp2lVCZXmV0/0rWbJgObqmsWzhSvLyO9C1ZyG7t+4hvq8IIhGEx0P4YBXle0r+l6zEtqXqf3CgGCEEuZ06KGz/ymtZltvb8UvQXUqwS2F1NhCP14uu60qUUdP+piCPs3gn5llPZCD2YROkxPMATmanJXp/DtePNKG5Ioi6R3ebCLNzszE7FaiAS6j6Q+K9PR6lqZQo5C/+YumvuUQc8fgn9iF8CZzvsI3GAs1Syqpf443/4/hXsYx+WRA5CUjQrb4EzhRC+IQQ3VBV9bW/5rm3rtvOocoaQFFAVb3AxLIsPD6vQ8sTSitfQiwWR9c1Tjr3eNpbQxyqqKa+up4lXy+nurJWRS4OBu58NyLhqCv09exDr1C6r8yNoqRD7wTVIXrKBcc7naorWfTFD2xctUXJO2vChbRsR7xt+PihZGan8/az76NpGnPPVA1ccQcfLuzRmWBSkL5DehNqj1C0c79yKrNt9mzf50Zae3coTfpxswex6UXDgcBwI8XEgtS9T1fyCzs6m6V6IBUkoxZcIVQfgeHRXVgjoWoKhxcOl46rJTKJwwbsQqhMLWGqk+hTUFGl6b6Pqu8IR4BPNQsKp1fB5/NSsqeU0n1l6I7hihCa6s6Wyh9B9xyuCxkej/uZEtIJ8bjp9kQowTaIxWIYhk5LUyvb1u9w5xchiESibN+0y9nIYiyY9x2gNoie/XpAgknl/M3OzXsAeP0v7xCNRAkE/GTmZFC0q5iGuibmnjXbXZBVlK6TlZPJwBEDiEXjVB2spnhfKZalaie5+TlgmZx0YDOitUVttl4vkVPOREowfD60nA5ujUQIJUViWxJx563Ixx9VEI2tmFEej6E2XgcWisdMYrGYk+Uo+rBuKE/sRB3ofz/Phx3UBGqeNV2RNRL3qNfnVZuvV3ehS92hG8djJodqGjAnTsGTnOT0HCgtKduWxE3VtOgP+DAMnblnHfurrQ9HPCRoljii478bQogPgNVAHyFEhRDiYiHEFUKIK5yXfAMUo2qqrwBX/aO+1r+qhvCYEGKbEGIrcDRwI4CUcgcwD9gJLASullJa//u3+fvHkNGDyO/cEYkkElbmIgkxO/UAKxZDLBbHF/CR1ymXYHKQz9/9yuVt27bEjMfV4mmZbuekinAdrDPRrKMpo3EEjJo43KHrKSx42vFTmPf6F4qdYUtaGluV9aSucdSxk5AO3dXwGPgCPnZv3kNjfTPRSIxwOEy3Pl34/QPXkpffgUAwwK4te2htaaO8uAKPYTjRcpzh44eS1SELKSUnn3880ZhSXl3y7EFqdirKpWEYeL0elwJpWzYl+8qoOliNrinHMY/XcOUezLhK3RORbqInIBFFJqI9xVs/fJsl/j6BBQshyO+cR59BvZBCZQ+mZbk1jY6d89wFTdN1DI8Hf0B1BFuOMYtLn3Ui4Ug4ii0tAkElphaNRJGOq5fhQF6gYKZYLIY/4FMbu2MsbzvZBw6tMx6Lu1RJ3TBcnwyBcFg2HA4IEDz70EtO4fwwHKc6i1VB1+v1MuPEqUycPpaJx4wlFo3xyRtfoBtKRtpjKMmTxrpGtqzb5vRz6Hi9XjyZmWB48F53PfK4uXw3f6kKPmJxLF3H29iAnZtLeOYcYmedh5GRgZx7AnYg6HaJ+xvr8YTb3QK3aZrE4yaa0PClJOHxeRxWEFhx63D2IaWTFWpus6FhGIogMHKMmzEkggUplTFPIsOOx2I01jUR9QeIj5/gUFYPF4qPP/NYNxPxSEnS5/OIt7U7YnwJqjIuxBcJRzFNk4Wf/vBrLhFHNMSvyzI6S0rZUUrpkVIWSClfk1K+KKV80fm9lFJeLaXsIaUcJKU8Mmnn/4PxL9kQpJTnOV9ssJRy7i/THynlQ84X7yOl/PbXPve2DTs5VHEIXdMdDX5l/O6mzkLhw9KWRB3d/VBbGE3X8fq9h6lvlqoVYEMg4FdFTaGiIMNz2IEr4RaGhPL9FdiWYpBohs6Wtdvw+70ODOOh7+BeICXhUISvP1rIrFOPITc/R2020Tih9jCWbTFy4jCycjJ54U+v8fa7z1NXX8vJ5x2noBdNeQpEozGkVFaUW9Zuo7GuEU1ofPPxd0hLEo3EaKpvcrHfWCxOLBZXm4PX48gb48JVsVgMTWiKsuks9LGoKsg76IujN6OgJkPXXajIhZQsW/0c6UIZCEHR7hIlQR0MKEjMMNyic3JyEsHkgGNor2KDWDSOLW08Xm/ikuPxeJTsiJQEgn50w1Aqs7pGIBhwoSPhFCmFAI9PWXFGwlFAutaOXp9XQRsO0ylh9+gP+Jhz2gy69u6KwHEhcwJA3TD+RuQvkdUlYLLDvHlFodyybjufvv0l33ysMouEwqkZt5hx0jRF+500grSMVLJzs5h4zFiinQoIz5hDPBql6pU36NujM+3OgukL+NCGjyJ8wcXITgUE167C88xfiDe34Fm5HC0YAKdPIBaNH/6ufq8L98QNg9D1t2BNmaqyNo+6d+PRuMs8S3QfK3xf1XNkn37YqamunaptJ+57VR/yer3us2GZJmL6DKJXXIvWMd+BXdVl+er9bzCc+hFIoiEl3Z2A/oQQLlxk2zb+oB9/IMCc02f82svEfzuEBCOuH9HxWxr/t9FO/+Gj76BedOyc58olGB4Dv98HCHRNeSDEIjFXXrqhrhHTNFXa60RUweSAo9vuc4W+dMNw1gaFxwuhqYhUN9wIt7G+0YmaDHRNY/vG3YRCEXRD4/yrz6KpvhnLtLjw+nNJTk1i1ZLV1FU3EI/HOebEo50HwMfeHUW0NreiJYc47wfJmKt1Pn37K4TQiMfMw/UEB5aJRlWBT4mrtYBQDBuhHW4k8vl9bqEzFom5C7M/4FeFd9smHjex4ib+gB9fwOfgzkruICGjkICFEpkNcJi1Ylt06dGZQDDgRODSPTRNI+ZE3j6/F6/XSyDJT9Fu5e4VDUdd3H7C9LF06d6ZaDSKGbfcBc3v9+HxKr8H27TxB33OPIfd6NultMYtYpEo6Vlp6rsIhV1HI4l5VhlGICmAz6+ECWPRGCu+W0V58QFnpnEZZbquY1tOJqNpXHj9ufj8Pqe/QXlLSEs1OkYjqiELqXD6YJLaCGPROKZlsvSb5fgDfvZs30e4PUJtVR0rv/sZbfRYgj/9iKFrxPcXIRcvIpgUROgaUaETy8sj+P1C7PR0wl27E7v7fjynnIrW3kb8ULXKAPw+PL5EbSWm6LuGrubZthBrf4YfFhOPx/AEAm5dyjYtBkdLMKyYYy6Ew7DT8ezfg7boW5y2TAXLGSqbU3Ue25073edDfvsNnrtvx9/c4NJHpVO0j4ajhz04DINA0E88Zrr1OnV/+PB4DCKhCNFIhGWLVv2zlo/DQ4KwxBEdv6Xxb7chlBWVU1l+CJ/Pq/jtThOTlDaWZeIP+JCoKD3BZgkkBVRx1bTwB/0YutIoskyl8mg65i+6RzBQljM2rGQCLNsimCnc5iEzbpLUETxenbRCQXqhsh28/u4r+eTNLzh0sBrLtnnvxXl4Ui0Gn9qAaSoTlo2rt2AYOpm9bWa92o4vwyLaZLDyAQ/bPrCJhMLE43GHgy+wHOqkP+DD5/MRDUfw+r0qktQ1txnP65ieRCMq/fb5HeaVE+lalolhGPj8agMwTcVu0jUNv9+ncGKpHt5Ez0KCNZPoB0gwr4RQ2LhqHlPRIwl2iUcnHo2pOYmbDj6sFoSEtHgwKYAQGhtWbaas+IAbtScYRqDqIIGAMlkJhyJ4vR78Qb+7yEiHmqvYYoLTLzrJ9ewNBANub4Lf71cZkdeDZapoVBX2naIrajGUCKduItzNQSJ546l3nXqU5kpyqKKo6ha2pY3Pp4rz0ViMi246H01XGVii87eluY3Y2PGIE0+kY+dcZiSbxCsqiEfj6JpOyd5S4tEY9sQp+DLTCa7+iUhyKuLMc9CuvwlPeQnM/9yZZy9x05nneNydZ3XNLCzTxNB1giuWkhB8bJs+C5KUj0HQDuORFnh8buFZ052OdUfXKR5MQj76uJsJ2Q412dB1tzbH2LGETz6V4MFyzJgzzx4Df9DnNCxqjhqtYhuFQxGVDQR8TgFfMZzyRpp0GuonmBxk/NRftVXpCIdAs4/s+C2Nf7sNoUN+Bzrk52CaJrZp4fOpqFHJUyud/tS0FILJQWzLdgtX6VnpSoLAtjEtW1EnLcs1/g4mB+k6ycPASz2YulctTCkeTvgoijfVduWcpz+gkTdYx5usMeqCJH533Tk8cc+ztLW0kTvMJi3XRzBDQ5bXkvqXLRTKZnwBH3E7xJnfmjQUQaTWQ2quHyE11rwYoa0aRk0eztRzBruRemJhiYSjmJaK6m3LUhGYaePxeV3s2B/wkdrBjxCCcCgCCHxBP16/om+apmKr+Pxexw1MuH4KXr/PNcARAuLxuKNQKlzcXPUEeJDSZt8OJTFtmqbKEjThNKfhQgK2Jd3ra9tqAU/LSEX3Gvj86nsFAn7SMlKVz7OUjjKtwOfzORRi5XaXKKp6vR5A4PGqDTMcipCSmsyHr3xKLBpTBANdcyTAFeXVcuiNElV4TQjrJTj89O1LdNZxykksrmS/fT4vF990nlNPUVRWpMSyTE6+YK5b5Pf5vOgenUg4grQlbz37gbq+hqEwcwlGjx7ol1+JPOV0Ksqr+P7NTxkzZSSDRirfhuj4iaSMGsGcSYOINjQRGTseX++eyH37iJaXw9tv4TF0Yv0HEnfO6Q/40YTuzrPf78PrZAwJv2uvz6PqFV9+TqSuHoQgHkhjg78HOI1tlmm6cuiaritorLmZwHNPYduq6c7r9UAs4haZAfT1azFefw2P18CybSfLVoVs0zRJzUzB4/G42bc/4HPmOYq0bJcQ0FLiI6VQ3c9Fu0r+iSuIM/5fhvD/j9HmiIilpClPV5/fh8+v8NKsDpl4vF5amlsJBh3c2sH8DcMgPSuF3DFhFwoJBANEo1E8Hg+nXDOFYUf3Yq9VQPMJ3QhkSZJzBV9dbiMjPqSEW6a0MrLdpqkUGvbCovuaeObBlzjtI43svoJgmpdRV8PZS8OILgEKTjmTlIGDQFj0OdVk2X0SQ/Oy6k86TaUWU2ZN5NwrT2fE+KGs/2kzSVO30nGoMjyxLAt/0OfCEUayjZQ2wRQFAwSyLU542U9aJx0tKcoxT0dJyfERSFLiambM5JhHdNILvM4CoAq9Xp/HZaO0OyZAPp9i9Xi8qh5ixi0SiNDIi/xMfUDRBr0+dR1wUn/liaDh1SVI9bBHI1GHJaSyjlB7iKTkJFW8dTp8dUMjKSWZ5qYWDMMgq0MmXkNRcX1+L6kZqaSmpyKEIDkthbRfzLNu6GR1yMDryEl7fB68Pp/LLNJ1nZTUZELtITyOEqc/4CMajbr4tnCax6ySEli9Eq/Xw+1//j2BYIC4afLin15XkBy4PQ1IWPr1MgCM3Dzs8RMJt6voV44ajXXxZdhCI3LMTGSnTnh8Xoz2NsRrL2Pa4Dl2Nr70dNYu38DWdduRHTpgHD2NUFs7q/qMwnjscbRtWzADQWwhSHviTwT9XhX0GDr2hRcTTU0nEo7g83sZ4GmmQ7ROZciXXI4nO5uEDIcVt/B6dbwO8ysUChOfOBlvTraq/XidngDbRvbthx0I4As4VOTaWgeCVWWDQdES0sN1TnFdIANBxCmnEg3H8AVUrUbXNZKbDpKUFMDv82FbKmMRQpCSnkJLUwu6odN/ehZDz1H9B0R81K9NJatDFsPGDv6nryNC8v8yhP8/jE5d8uk9sCeh9hDhUNjBj9WD2+/sCAV9MvH7/dTXNZDXM9llpITaQky4OpWZT2oITfGrA8kBrLiCWfQ5C0mfuoec/joznzPpNtHLOUtinP2lRk4vD5omeH9XNg/f5iXeLugyI4InPU7/Ez10Gqmi1vpdGkU/xPClCi78yU/u62FmL2hixhmTqNngxTC8HPeyoPWQyfQ/6Ux8/gAFdy5i60YFJ/14c5CqzdKJ/nCZOcFsyWWbLM5bIkjJUzzw9K7QZUaElEIbLZbMN5d5aKmJYFs2A08OMOPPOj89bmKGFS000adhmpaCZHyqwK7sM1Ux2/Do+BwGkPoMks3vxtnyik/1FSSw60iU/if4sCxVOH7hpAbOHNqOz+/BNE2CyQGklK5gWnpmKu1tYVRR0iY1PYX6mjr8fh/ZeVlEwxGHEAA+v59IKEKoNURGdjrhthCh9hA+vyqG65pGJBQhq0MmgYCf+poGgkl+QDXRtbe1K9VWR7rCsm0XtvIFvG6DmKZpWM0t+JsaaGtp54EbH3NkLiAYDLiyHO3DRxPzBzE8HsJhxVTSsrMJjxzjMmZSDpShvfMWoWdewj7nAsS1N2BedyN2fT1y+AhSP5+H9tNKmp5+Ac3nIzkzDdm5kPbuvbAtSfvmzWi2jbZnD8Ylv8N4/RX0WAzRqzfmRZcS27ABX0sDqcmq7hUOhdmvZROeMRf7wkuQH38EsZhL/9WwmdywlgFarbpuQiM8aqyqBRUUIB94BM8ZZ2DHTUKF3RB+hfN7vR68GiR5VAYVCcfYk96XQyQ7ZAOQnQvxdsrHNE2Sk5NwKGsMipTQPyVOqC3sQpPpWWnUHarD6/ORk5dFcpcYjcXqOfYFfIRDERrrmti9dc8/eRVBNWvGxREdv6Xxb7ch7Nq8h/UrN5LdIQvdMKivbSApJQld1whVCyb+MUaXQVl4kzSOfqmeIcfnkNQ5ynmLPJSvifH9lWm0NoYd+qCB7odhl1uqqGhrrHzY5tMzJUMvVEyjpu1JZPeDKXd6Gf1EnPG36Ex5wOTY52DSDcn0P0VH9wpO/VBj5qttRJokO15LBa9JSK/GEzAYdH0t1dstOo6AYKaSbW6rttn89SEq18PQCyXT/2LSc5aky1g/vecqraELlmrMfEInd6CGbqgsJDlbUTMrfpYsvlmixX2q6UfE0ITqzfD4BG01klC9wKMlqQjMgWX8AR9tbe3EYnFS01NBQGtLG74UZwMSmuOZqxrJdM2goTyC4VV9HSlpySAgWudg6bbkxm9ymL873fX69Tl9BKG2MOlZacRjJobHIBqOkNMxW9leGgY5edlq4xHqmiSlBmmoUzLkOR2zOFhaSVaHLLw+L/W1jaoWpOsITSMcipCdl43HY1BzqI6snCxi0Rher5dIOEZGdgbhUBhD0zAMD0KAqXvwBvxogSDmmHGuHpJEkpQcREoFdUUiUYSmEZk1h+jV1+E/8SSXtSU0QXtrG9qS70nLSMVGcOa5s0nNTMNbW43YuwfR2IAuJcIwsPM7IU0Tf04Wum4QvuRKojfeiuf0M/D8f+2dd3iUxfb4P+/W9N5DAimETui9916kq/QqRRGxgB0FCypKExEREZEiXZHee4fQQ0gI6b1n+/n9EczVK96Lvy9XLtf9PM88uzsz+75n3tmdM3Nm5sznCyAuFu03X+P45aKyuQpFhWXoMGyffIp5+stY2rbH6upOxe3fEykZYCgpU85hYZQ2aoF6w3oUBweILDukXkRQaXXkBUQSP+oFTGYLLnWjUVWrTpFVwRoZBeERWCuF4eLqjHrzJmxZmWi0GkpLSgkhn0qmVFzcXMpMTaOfQRwcsVmtqFVq9LduwtIlAKg7d8LafxCFRUZuBDcmqUINrO99SImzO74BPmRl5KDWqPEL9MFQauTaD5B+TghzNJOXmYXYhMjq4bTt3uovb0cUQLE+WHic+NsphPot6tKhVxvyTam4+ejx9HInLSkDJ2cn1HqFCo2FwqxSAv2D+bq5UHomm+AIb5wDrHRdYsGvggdqnQ2Ns5WeX6h57pI7DaYZubtXx/X1asK6mej3jZ7AhgaOvKNw+BU32j8XRK1RBiq1t/JMWBGdaxejVVxw8DWhaMp2Rp9YXMreKa4U33WkQud89LijMjlxeXMxK4cmoNFq8I+2sn2SoHdw4OY2FUFNLVxbr1C7nys1nlDRcLqBbp9p6faZFpvNSupZIeuKmtQTOhw3PIuUagltrkFRCxonG10+0dD2LR3OlUqZfENNw1GuqNRqLm80c2revbN2FYXsjByaT9cyZLMOk8GEk5MTnt7uFOTmo9fr8A9z44kfzDj7KYjYMBjK7PNV+tjoNLfMYVlpcSkanZaKzdW0mqkh8aQJvU6HyWjEZNOiaB0wlBhxdXcps2ebLdjEhoe3OyaTCavFgpevF8WFRYhAcGggpSW/nJksuLg5k5aUgZuHG85uTtxNSCaiWjgpd1PR6rR4+XqSnpKJ471FAQoKxYXFBFcMQqUo5OXm4u3nfW8i1ISrh0vZkkuzBZVKwc3Xh4KpL6GrUhlVYCCGimHo7zX+KlXZ3IdWV2bystnKVtlY3T1xv3oJ2bYFU+v2oFZTUlyK/vlpaKc8R35OAY4LFrKrXjtK0tJYdW0Ko3fMgMULsAUEom3WDLWzC8Z+g5DwCDxWL8dhyQLMy5ehdnOBSc8iWh1iNKJJT0et12EeOQbt7l3oLp7D5uBYdoypoYT0um2J7TOG9sXniXQ0ojEbkeXLUIqLCPHT0+LGDhwNBei0KrR6LeeN3hi37cTTy4PCcxdQq9U4vPMu5ps3UQoKkNp1KPb2w9nVGVOLNvDMJEwjxnLD7EqccxgatRqtg56SVu1g6XJKI6rcW9KrLTMDujqhz0pB6dAQm6Kg8Q+iVKPH7B+IZ3gopUVlp9oFhwRhNBipU3ILP1sOzWoZCYk7QqizQs1ebiQkXWfPlkewU1lAsT1YeJz42ymEY3tPsHfrAfrPDKf31lwUjRAQ7EdKYiqRzd2xlIKxxEbnRRZ6jfZlYcd4WkUJW8dZ0TpBu49MTL3szdATxQTU1uLs4gIIhjwFJy8VbeeAo1ZD9/lptHjChRFbfDBdCeO7Hmbit7jgHVNK0F09ZoqI6g3hrXWgEtrN8KDHymL6rDUSEOKLiSIURYWrlwMqJxNhrdQcfE2LxWLGZrNSpaMDzr4q0m8YODBDS8IuB1yD4dZuC9tH6dG62PCMFLzDVdQcouLd5z7l50kKyccVVBph9ClBbXOgJNtKbrxgzNCjUfQYDGWjn19WW+Xn5HM3IQW1Wo3JYELvoEetUVOQX4RvgA9mk5m8jEJc3VwZtIlyP0KF+UVU7eRCxdaCq5sLFrMFLSZybiok7nAp2++g1dzb1KUqX4vu5u6KTqcjP68Ab18vrOayLpbFYsHJ2ZHcrHwCK/jfO7+gbDLS09uD5IQU/AJ8UKlUZKXnULVmZeKuxxNZLYJckw2zVQio4E/K3TSc3ZzL94mYjGaCQgMpzCsum/CVsiXDZqMZvwAfigqK0eg0uDrp0b/1GqrEO6hTk1GvWI7m3pnZv4yUbPeOYnV2dcZmteH140bM78/BVlyMpk40Np0eT28PTHNmU1pcitfQJyl0diNzwxZ0DjpMJjPUrIk+OBhjQBA2AffPP0NVUkRpUAhaJyf0TZqg3InHkpaBk1ZNyVerMM7+AK+a4VSy5aD9+kv0sddRZ2ZiA6waDc5vvI6TuyOG+Qu423EwBa+/T+Gw0ShFRegjI1BXjsSmAo+n+6Pu0AlDpQiUV15F1bIVBfkF+Pp7oX7rNQosNpzGjaPG9CGEXjiAZc5cDHodjn37Yq1dB8+Du+/trjfRoPQGzX1Lkbhb6NNTkbxcQqxZVLDllTkB9HCjcqVERjYejbePa9nKrfjbOGgyiejoQ05WHgHB/tjESp2CK3hZcug8ygGPmRacQoKpQxKt5mXz/Kam9Hqy27/6y//HUKzyQOFxQvPvs/xv0axdY+bMbEP9O2s47dKM7qsS2TrIhVqdAtjzaRLP7PWjVnQ+vtEaKtZy5/r5QLQN8hhqDaXAlsClhQ7U6uEDrrkIFhQ0qFBTa4QFC4LRrObMahOHTvhRva0GB49klHaXeLKrnstfa1hWvxJBHfMBCzo8sGJFjR6TqgDfSm5gU2Egm6tLvfCrb6RiK4WIxnoUYwkWNzeKMhWWNDRwY6sarwgH1Loieiw3IgWugIGaww3UHeiFQV2Cm9lKWDhEDdAQ3gt2jdfg7qdC6yJ8XksYucWRCu1ysJkVDEluNJ1RytnVQp0hztQYCN89UYJWr0On03Lwg2IcHB3KHOBZrHj7eZGdns2IFirqdFFxx6+QwzNcARvunm7kF+Zw/ItCjK96oNZYcXDU8WaLRD45H4mTj4o2b+o4+t4vbpKtWO6dm1CxpQYXfzNx1xV8ArwpzC+iuLCESpVDuXs7CWdXJ5xdnMjJysNssRAcGkjs1Tj8g/2xWizk5RRQuXoE12NuUrtBDS6duUKl+Z9yxygoH8wisGUz7iSmUCXAm7TkDExGE86uHrh7upJyN43wBrW4hSMOibF4+3uTlZ6DsUlz9DnZqO6kYLIKcs/3lclgQq1Vo1FrsGEjNzuvbCmpswtqL09yRY0tOw9vT1dMO7ejDg8j//RZXD1AtXkNufsO0OzSPpLj0ijUuvLsoSjyPngd5446HIoKMV28iNZqwuPTuWS/9wmFioIrFoojqlJcpTp+RQVoYuOxRUdjCwjC2cUR06RZaCqGgq7sYHsV0GTzfDRH97Bt5Mck9e2FwQYtJ3cmrmN/cjv2xuPzV7k4fQGGqtEUmgXHsyfQrV5Jyatv4akIOWvW4WK24HT8INk9+pEz5VXMP27H39WPWgXnOZ2Vgm9cLub8HEyOejSF2bg4mSnMzcVt9pvYLBZ0QJjtLg7uVqwTXkLJSuJGkZ5TTeLx8/WhtLiEotx8nqs4F3XjFGI+dMLF1ZncrByKzaDt0Qb9y+nEDPNBwl2JP5tDk1cjOLblOA7vHKLbgL94c5o8fr3/B+FvpxCytRcpHLmfO1mtydHHkrI2iuLiWHoudQSVLw3W3CS4RV3iVJkYVSWkNYzCxk0UDZhyNZz72kRoDS3eUXoM5OGMHxqc7vmJV8i/oWf3jGLq9vfBOQgslKBzA0fcELNwekURvTsITuKLymyiwc4CLjaxovPwo1hTzLaxZto854dNm8+RN1zpvqIUHweFoOvCjUbFKGY3Goy1cfMnA4YsT4ZssmLFiN4TxOxCg/UJXO7lATo9/tfySLziSGYVHSFNILKdHq1OTYnNSulWB47MEYrFQuMxrqg1CrcPmXBwcMC/mh6v2nk0mqhBMThxfl0+zSY74OSl4shHFpxdnSnIK8A/2I+zcamENlJI3OrH6W8z8fBwp986K44uvmiCc/i+UxFKlis6nRuTtxhxdDbil+KE6qQbFksOLq7OOGhBoy7b8NdiugbxyObAQi16vY4co7ncj47JaKJS5VDy8woxGk2EhocQe+UW3r6e6PRa0jJzqFa7ClcuXKNe02gunIyhXtM6XHphOtWa1SeuqARl0nN4i43bTz9N1dpRJMbdpTC/iKC6NbnUrDOGiv6oNU6YX5qKRqPGwUlPWo/+VCzNw/nwMUwTp2BxdsXh1VcoKijGo21rbMZSDBcuAeBWNQrLkKHkhVTCoNHhW5BNqcmEOj2N3GXL8R47hsKgihhLSqlJIZ0zN3O0TmNOJYEMHYHLjasUhVXG88wJSqZOo2ThfNwrVcSpMI8SVw9Eo8a5Z3dyLaD+6gtc0zPJrx1NXmQ0eSFVsVWrQfTaj3ExFbN32BvosHF16EuUNulJm4MbMWmzOdVtNHcGP4ulYStKCo0Uiw51QCCFFkGvAq3Vgs1kxkUNec3b4JOfR1qVaKR6dUINueSZrEQnncftnZ9wcdDS6oVe4OKK0S2QdFdvKmTEIDYnPN0VqjuWciFXYcBKFwwTFAqCI3Fo1w40NrINZsxrNuIQoCcvO79sv80CFXXnlNLgiQhcwos4+okBTdU6nN92m7oLgui5yAGTcy63v4hm87vX6NS3I807NHkkbcnj1vt/EP52CsGDCErOtWbmG8cY/31NggZdZsqg2hj0l/CiCgefzker5OOANwZycMAbZwIpIgnuVCI39wZiC8YRHwpJxoMIhHTUqLGY1NzaZeTJnxQq1dKhaCyUihG9zQXUKhpOtlJjvIE6xxwIuJnC6V5eBF7JxLU4BFveTfZNCKHtNB9KbfkMrq1GeyuZrJWepD9rJr6RBypMaIPy6PCqHy1ezUahEAe8KZVswk6k45PvScBtEzcKCtG4eHC7rpFSFwfIKnPFXLO/luyb8NMbVvp+5oHGzcS6oQoNe3mBaw5OBjWd3vLg2u4cxEXQGLwZUz+WuyM8KAzWUVJSTPx2D1KuFuMV4EatCQVcWuzPvCElqN0zCa4YTNrdNHa/6MygLSYsuV6kXMnE27ds0t7bx4283GJKMlyw5JX99KwWK8ufLkTvbKbPEjUHX3Th8sXb+PgHolKpyMnMJapWJHdi7xJQwR+dXk9pUQa+/t5kpWeBAkGhgVw+e5X6zety7vgF6jSuxeUzV6k1dijnqjWknsd6Lu0+St0mtTj70otUqRGJQa8j9W4a/kF+ZKRloi4poeKR3aSsSKBqtXCuZucRHBqIT5AfcQYTboZiMm02XJZ+jtFspvSeewV148ZIfj6lx0/hOGgQ1p69sDk7U2wCX52CycML7dLF5I6eSOBbr5Ps7odOreCrVdBF6cjbcpNzyV7oP32LHJPgkp6Cy5YfyPPyxdffh6xPF1H4wbv4z/+QDBdPiqa+iL9eRb7VRsHI8biphFzAVr8BWgUoNJHdogtZDk5YAe8d27DduEDjPV9hfPoZzrUbhEoBQ4feZButKBu+JWvCTPy/mYe565NYqtSisHELvFu0oNCmEGROInrnIs4kdqdk1ZdU18USaFFTkHgbnasrR4igYqgvThm3SB7xLFE/fo3GPwBDViZ6sRIlGbiUZOF8OIDDntE4FuixFRXR4vt3SD+wm2ttR6ME+ZJzbg2RVcOJ2ZtMxpO+BEU4ED0hE+9V6SSmZFOn+CY5Lwex7kQSXcbWY8vs80Q3qsX+Hw8ycFRfohvW/EvbEUUExfy/N0T4280hlJCFY5NrVKsXzqLOCfjra6JUu0ogjcjmOgGGBhglFz0u2DBhIh+PYg8abs2megVHJl2HsK4GtLigQo0GRyyUUvWMQuheC/HHSwmq4YRGo+CQXUTHLzOocbrMrYVRycNB506Bj5bDgzzJ94bdL9XnZOtiYtsFoRUX3GoUEFrLHZXRSEi4Dn0nA223aDHb8tHhggoNBnJwJgAbZiyUoseNxBo6XHMsiN6VbH8LHrlOBF0vpZK7iRrVNCioqNTcgeiRQqdPhEoN3QhoUUTz55zwqKiwaZgZ3xBXHAKMdP3STPquAGK25VBwGq5tdscgeWQf9SX5SjGOjjp6RefhrnIlL7OIxmMdaTmpzI5fq30FsuOsfN1COPyB4OnpUd77G9da4ev+mXiqC8vWmLu5UFJSyuab3vyY4EdpUQkaccKQo8HFzeXepjMbnp7uWMxmfPy9ycvJp7TUgLuXG9np2bRo34SYs1dp2r4RF09dpnaDGty+kUBE9TCSt+2gSnoC8WdiqNWgOpdOX6V5VBA3duyncav65GXnoWveHLOTC7lpGfgZClAyMnAyliAiFHn54Brgh+Poobhs30JpSSnODjoc1CqKIiqjXvEtNGhEYet2GOZ8hHv9umiOHibbDK4a0CDYFAVrdg7hn3+Ebs6LhBlT8dQo5JiFRO9oVrj3QG8yUmCyEuigItcvCP2w4Sidu5Lp5k3lghSMU6dTZDDjVZCDFbAhuKoVip3ccPUpO2jJJuB05RKOI5/CiI78oDBEwLVHd5LHTydx0CSSewyn2MEFV41CqU2o+O3HhHVrR7FWh/vtK7i5u5JXaqbJ/tVUnv8KLiX55AaEceeZt8juNYAmU52p9nMjknML8QwPJ6NqA3I++wo3TweMdZoT06w3uVF1uDvmNfbP+4kcR08uTJtHzKqjpH10iwZDddQZpMd9eF8cDaU452fj160dzpUCaFVwjqq+GvLTjJDvTdyJPEoT89F0q83hPGfcez1F4tKdDBxSg6Bhl3nyk5p0XHOH9sNqlXl+/asp227+YOEx4m+nENTocNC6UP85A/6hnhg1GXgSSTbXCDA15GCtz3HZFEUmVwmgPiVkohUnXIwepHml4eNSkUKS0OOOBifKHqFgcdCiD9HSfx046FxQ0JPnaeDkU5Hcru+MBQOCDUe8SKhiRKXWE5juToE6lbYbbUQfMtNpwU288tywYeZGM1d2j/bB6uCAe3wqNS96U0oGLgRhFRPa7FyCk12puykRR7M7BjcdB/tpOTO4Cla1jerHS2m+IZfWK1Opv6OESjFGdAYNJfkmdk9VuLxYi1ovdHjFB7/GJZRmqjn4ghclpQXoxYMOi4oZetTI+fa1+G5uDkp6BRIv5+Hgoqb3MoUaUVaOfGymYh0Paowu5sIyHT7+XrRamEynGb7YSnSc/76ACtXd0ejLzh1Yf8mFd05GEpdqRKfX4uLuAsCuOBf2x7uCUnbAi6OzA+5e7iTeTiY0PISkxBSa13Chc20t6cnpNG5Vn4unLtOsfWOO7DlOk9YNuXL2GlE1I8lIzSI40J1xdTLwdNVj+mE9Xl7uZKRkUqVWJJfOXKF5+yYc3n2MFgO6cqF9H+ou+Ii0ChFoW7XGq0lDEm8nEV4tnNujpuAyejROjg4opcWAgtKrNwwagmnmm7i6u+KgVVEUl4BH5XAUVzdKHZ0Qo4ngo/somv4CerHh8fZbJIycxOp+2SxNeJscs+CrU2G2CbY+/Sid9R7OWhUZRhthTgppRqGCkwqzFQK/nEPnpS+T26sfLk88gQbIt4C/vsxzkApQK2C0CdoKFaBFSzT+/pjLPFLj4KjH5OBMiCGX6rPG0fzdUTTc+x35ZiHi9kXqT3+ClkMb4l6/EXHuwQyc8zQFpSZ0JYW0n9oN55R44ts8gVuDeuyv/DHr42ZxacUR4sUBjwB/nHRqfp69jpxK0XiOfRLf3RuI2LCYDkteYW+eJ8V30nBOSsCmqLCUaNBZVTQuvoqbVsj1qECTFbMJeHMct6t34WJyCdU6eBDd1x3nGhloV1ck/f0fGNQshMIfV1Pj5d64D01AnxVB7MlMnNSeNJtVhHvQI3IgZ7U9WHiM+NuZjLQ440owhtArjNgWQhEZCOCAJxZdEbV+6oTNVowjXpSSjRYXcl1yOD8gCiOJBFGbfO7giDdlfTUrGhyJr6lgQYeCGjU6BAuigOLsjZliTBTiQRiFJBOQ6kbDn0vQ5qdQMNKTS91DyFenEX0+DHVpCXjo0eKEgWwiYhQsqLkQasGVYApJws8cSejRU3hqquN+s5hd6gzcW3hR6pVFSUg4Cqmcb6dHXbciLVenUejvSlZoAe5mHQ6OBpaMKcWjRjpFBwoxVnfntn8WITU88WuRQ8V2Vkqu+kKNq3ipo9A0u8MLlwNxkgLOf2mjagd3POpmcVUTjHlVMSpnE6XX/UmLTyawgj9ru1gozcvG08MDRzctXdam0eJcOF/0isPJxRE3d29EycNitqK752bZbLZgKDXyxAo9UaFWTvcUAgJ9OV1SyuCu4Xgm7SeichBbY7JxcHIgP7cAT28PcrPyCAmrQHFxCV6+XmWeNwUC/d2o63Wb6KhQ9p+8S8XwkLLRhs2Gr78PuVm5hEVVIjXmBsEpH5M69TmcX3iBZI2CV9tO3N61n3qOJm6PHYHftDHE9B9ASctGaBt1oKhRA8w2QWWwoVPAlnQX3esz8P3mK4qDgsn2CqLa1wtIOXwcrwb1UCxG8s0anD5+j8UhUVzsN5YQjZXCVd+h6j8IRwctWQYr3tlp6AOCyTZDmJPCnRIb1d3U7Jw6n1quaiwlQppWIcBqwnp0PyHRNYnTBVFkseGiBoMN9H6+WCdOQe+sxlBiRQcYbWWH3ThUq0Wi0UrFlJskFZVgNVvQNGvLJc9g6kWlUbTxG4acPUxc2/5c7z6CgF5D0Y5pT8PNizk8+SNMaGi2bRnm44e4PXMRsa8soNnzPel2/Rwp1RvjuO07atdvyp3MEDBr8fJwAZuBCttXYXRwZ49bI3zXC57eJio7OGC1CiU2Da6Vwrl7aD/dnqlKpt856nQLQsghBB0eFncur2hMSImKNmc64RLuiwk9Sbs1FB4oIGtsEe5L9Vj0xr++IREB2+PV2D8If7sRQiFJJHOcAOqTQywlR6pyeXsOLgRiohCfKlUwV8snlNZkc5NKdKCAO3gQjoIKNWpUqLFhwYoJNSoc8cGKCcGGFidU6DBKHk/My6fWIQMWDOhxLXONgJ56+82UumtRSvJpdMKH2LB0rKHVONxboSDQCR2u2IpSabHPmyOdS/gyuwZfdcpDDGX+eIp1hdxuHU62/i67hjdjxbNFFJ0JBgQLRrS4UOJQhCHAj0utHUmp7YPGLEReEmrszSJtZhgxT2ioftpG6MUC2q7I4O13vYmeks+R8ZW4cfYujuKFJq8Am9hw1znQ+qsbLFroSdN5ybgTjnOtdPp+7oajqxrXqgV0nhJBm2XJhFWtQHF+CT7VFXRaB87Mc+D8N2Y8vDwoLTHQ5k0tz990JicrFwcHPc6uzmjdBMXBhKbUm8SDZX7ubfccwzk66tl5y4kfMhrw/Z5UegzsTMzZq3Ts3ZbE20lUigqlILeAwJAAstNzqF6nCsdO3uaDxG5s2n6Zxq0acP3STaqNGEJWaCTBFQMpLiyhYkQI6SkZtK8aQMKIMXTPT+BOiY3KV8+gP3saFFAbjJQ0bUVJ5x6og4LwaVQfvTEfZ3MRLmoFnUohx68Cysrv0Lu7UWoVXNRAh07UkjRcxoxE6+pMnkWIeO0Vvu3yMpagWuRaFRzSkoheOZc0g42InGSyZ75GQGkehaayndBaINtkI9BBTXypUMVZRZ5ZCNUJRk8/TIWFuGmhyKrgrVNhtoHzPW/czmoFow18dFBssuKogriOg4nJ0pI84nVOdR/DyAVDqRC2gezpL3Ny1JtYzGacnR053W4IkS5qkjPz8K9XH2X3Fnq8PpDQ49vx3fAVblonMseMo9PKdzCXlHBb5UvQ1VPonZ250u8Zbr39FeaiIhKdKuDi4oRv4nnqB+Qy4aQrNqyYzGaCnqmO3yAvgvLjcXYXQtdXpdpgd66uUyg8XJl8bhNOFzI1l+n2Um8u3c5Go4nCSD5OBFBYnEuT6sEk7zpFeEk3nAl4NI3J/+AI4W+nEHyoRjRjucM+KtGJ71+6Qtp+L8wUY8NKMem4UoEUTuFDNbK4gg43Uq+VgEVNMRm4EUo+d9DiigUjGhxQUKO6N+BywAOTUkRMnyrE1XPGRAHeVKeARBzw5NiTQezsV0jM6C7sb3uXAKlLIcmojI5c/NyJImsqulWV8T12GrdF1RmoHGfW2noUO8TjkFCXIkklKqkSEScyqLzORstKJdR2T8Wl2ImKh+IIu+OFxVyAd4EvdXfkEnlFg2OBhZToAM51cUWnD6JEkw8eFfC+cRdnoyM2Uz42rPRb5kHVoUWEZVWm5ZLzNLpWgyzdbS6N68GxmkkY9jcgW67hTQ3cG6bSa6EzOrUj53cm42OqS/1PrjJtR31aLL6Li6eOpB0eVJ2YTPvRVSnIK+TsUhvn3/ejuKgEdy93FOCpbWoGbVRzdr4Dtw8YcXV35s6tO1SMCGHXmVwupjlQXGrG2dWJqxdvUi26CqcOnSW4QxuSh07AZLZgvOfK+ur563R+oj07fzrMkG8XsGPrQbq/N4NTdVrhM2EcOS3bYUNITUonNDKEQzuPE129Eqddg/DSKhTGJaCLi+Vu7caEzPuQOLOCpxaM8fE45WTx7aXxfHV5CppVK/DJTCHfAh3Xf0TE9pXkWqCuh5Z432DcO3XASRFuFQuNPbWcw4VG6hLSXpqBsyL49emKx7avaVqawmWvEOqsWsYVtTtNvLXEldio76kl1SBEuWgosYGjWoVNIFnlgK1GPW4EViHEUU2BWQhyULABbloVArhrFSwCLXatIPKtsQRpIb3UgrOxlKLiEiw2KPjkLZxGODHY9jMRYzoS/NRI0s+cZvS+pcTczabnge/J3bKOWot7kVmcg87dA7W7J+eSiujUoCJZB/fg264LZ+4Uccm9BqbACEJffor+mz/BL/Mm7Z8tpu8ngexSVyMprC4XVpb5A1OrNQS9E4VzHze0Lq6kxsRi/U5P7MSTpJ1TyIkV1DiQz21KhgmlX3xLwyeCwDMbK0YEM4m7nTjvVET7u9O45r4aAzl/fUMioNhsDxQeJ/52CiGVM1xgKTUYSiIHmLDHj94f+JPNNSrQnCKS8aYKIPhTlxxuEGUZxMIRB4l5qQGlZONFFCWk4kk4RaQBCjqc0eKMhVI06FGhIiswgKQMIzpxw0gejnjhiA+5xrt4FtTlRkAMrU5UpuW8w2izvdk2XM/xleko16KZ/el1Vvr2Z8anV9nfaCB3Ik4TZGnOnFbHSV/WmJPVL3FyahdCVDG8OjUSg3cqLQ8FEXk8lToX/OkzN4mwJC92jfElrlkAaeFabC7uiAIuBCDYKKxWA0rzODuqGZfq5eEt1SgxXsffWpOdFy+Q5dmCkE07CJamxDudRE634Ythpwk83IT80nO03x+OpSQVU44OV50PX/S/ScpX9bBWP4trWn1iL9zFx88HY7w3qbGZeHp7kBlfStF1T1QqFZ7BeryjDVz83JlLS5xREFISUwmvEkZSfApRNSuTmZ5Dw5b1ubR3N6OmDCHm9BUatqiH2WyhZscWJCh62g97gounYqhQKRhPHw8O7TjKsK8/5mt1IKN+XMnWCrWp6KTGS6dwKaoeLXq15+7tJKqMeAqlTh2i+3XnmkXLyIoO7G7dh0arl5Pt5E61WlEkmxSquGrJ2Pwj2jXf8U3EM3xXcSSlCYm45mejUsDDyQGn80dxUUOByYabuytZE98gVu1GE52BM7lmGnhquO5XEX8XHXpjCfEuAXgNG89RmxvtfLQcL1bR2U/HoWwz7X3KXlv7aDmWY6app4ZrRVYaeGhINtio6aqm2AqVndXYFAh0KOuIuJmN2IxGPEwlAKg79OLYjC+IctORo3Yg/O1XuXv8LDWsRey6GcyBi1/yxakoij5bx+d9ZxLWrSfxSxbS68B6fly7H8/XniWnw13oOZCboeGEHW5C9W4B6E9uJ7JDezIObeeJZhWJjU8jo2J9bka0ofhKDC4BgVyPU9DZPDCrdYjoSLlooO0MJ9rOcAZsFJNCUr1ebElywdsrCvHL5fVLdfAYtYdqDCaDS0S0aodjOwcGzqmByTWJirQjg0sMml+Jvp+7kqY6S2vlfZyURzGpLGC2PFh4jPjbKYQgGtOEl7nCt/hTFy+nCiSqDlCfKcSyiVDakstt1DiQw3U8qYxRk82o4/DUrGYUkohbXhi587Pxvh6NkVwc8UJBgxo9CIio0OFG4gY/5re6i1dBI/JJQFPqTuwuI4trWPlpmgkHmxcpQSXkR4RiKnIk5WYuz++MxlrjDM8s7IjD2KNMXdUBep/Ax1KDPPMtRm31o1JXEwAq5wC2jXcktmcDkiJt3GlblYNDvMioHUp8HRecTO7U3ldAYIoeG1b0uJWdIYA3CgpFYaEcGOyBp60SZooJzY2g42exeK3zZuNIMyvOuHJ0VBQ5hrt4Warh2u0kX3zYlOaHNtIkriUeR/fRcXcl9P55DNnkQK2OAVzcmsPxV3w5tbwIjVZNtGc+2Std+SjkNO9NqkVSfBJ+gb54eLrTZKrQfw10LDLRpsCAp7cn2Zm5NBs5CKXPE1RtUof4mwn0H9ic9UPS6BWWQlStSGKv3EKn0xK/cg1dNn3Fmg++4MVvP2bnpr3UrFqBug2qsWrkNF4P0/F5jo4WTlYCSvLZm2FmRqCwbsEqOk98misRNdGPH8/lw6eplZ/C3dKyIxqbeem4U2KlipsWBxW09NKSNvIZPF54noO+rTkd2AbTjNeR2tG4axVyx73C2ue/oKW3lpslVjw0ZRPGnQbVJHLRG7hrFQpNNvycdKhef4tcRzc6pl4g84tPmRizib2ZZnr46diXZaKBh4ZrhWaCHFQUmssOlfHQKhRZhIj0eAxmK8G3r6B571281aAGPO7NBLrmpMKmDXhkp6Gkp+LqoEe1fx+hd2+izHqDGpdOUnz0GA2O7aB43FhCftiOee4HyL6DeM97j52pWrIa9+Xoz4cYNL0Nm749geZYR/Z8sZcxjt+ickqmJNsBbXhVHKdqib7ZnYuFevQOeoqKStEFVGBtugeaPsM4uzkVvc2HegM8aPqShX5rFar30RPRXocODwzk0bhjS1CpqPxeFxzeFyrSDsGCBQPuhKMaYyDgvXDyuUMgTbnBBurzLHfUu/FWVcGTyhySV7HJo2h0BazWBwv/BkVRuiiKckNRlFuKorxyn/Q2iqLkK4py4V544z9SJB6RQlAUZe2vCpegKMqFe/GVFEUp/VXakod973TOc4IPqM5TWDFyl0M053XO8BkVaIkCZHOFaspACknFt7AWx/t8ie/5emS5HANUmC+HcOozI7p0L2xYcScMC6VYMbJnggc/zygAFOoOcWTMCXB005F60IWLb0fw9ahr9H6qB6e2XyF/W31WfW9md2QIiWcMdBxfjWzX0xR+05XPhu0hf3lXVkw7yemZIaROzeBq+32EWtsxv885dHsGEW/bTQVaoru4B3ejH/H7LpLr6YbrnVT8UlQk1XDmTi1HigN9UGzgneNM/Z/zqHTBzOqOOjasLSY/1J1s/V0c8eWm12mWZPVk0sxDLJrXh5HeO3C+0Yml3VM48qobTuLPnUHXuDXuaQ7VOMqhqiPQXjlMzsnpXM6uz4gZeobVTKNFjzrUfP0mry/pxMjAYzR6YQRngtoTm1N2EE2VLg5U7qHQ6Mhd2mxSqOlVQA3PfCKqhmE0mgiOrobRbKVynaqAsHP7Ga54dGXmpyep1zSau/HJDJ/8JOdPXkLvqKfJyi95Rwlh9pI3KP12HtVL43nq/Zd4J97EuDBHSj/7lE/x9qoAADwlSURBVBMjn+H9CDXvpii0Xf0lpZ26c7nAyjzXaxhjY2iScIkDWSa6+OrYk2lADYQ4qjCL4KdTYQWiXLWUFhRhLCgsb6RFwE1Tdn6ws1qFi0ahupuai/kWfF7+gI3742hx+zx5FsFNo2AUhRpuGjZU60jA0rUkvvsqE85v4kBcBpFOKtQGA5kmoZOflrP5FkaGOvBzuplO7jaOvjqHyLdfJPbKbdxyMkgx2nBUK4CglJbiXjEUy4DBeLm5oJs6GZcTR3H5/huK9h/EOTmRpKuxePt5cXTHEZo0q83PK7fw1IT+nD50mJFDqxEfn4pnYABPfuuN36DLTFrSCV2vPXxwrjualqe4vaAGGQkGbgfU4dwpHTm76nL9ym2eerkj6cU3CatcEXdvDyJGaBm2V0WNvjo6f6pC71+Kk+KDFSMWSu79X0qIqB1M9GgTboYqCFbSOUcgTUnkAL7UppBEqitPkskFvLMdCaA+51hAM14lnp2o0dFceQOV8gjWxpR5Znyw8C9QFEUNLAK6AtWBIYqiVL9P1sMiUudemPXQy3OPR3Wm8qBfCgdsADb+KjnuVwWf8LDv7UUUNXiKJA5hpoTayihO8B5hdMK5KJJYfqRu6XRicrZgw0zilhCuJXgSmN6EJI5Qifbs2nGWi0Z3HKtXRI0ONyUEC2WTx+G1/anYAlRWHamGK1SsUIUs63UOznQg9U42IeHBHNp5lHY9WrPi5cPknvLBZWUu8d9qOPR1AsmzuvLlzJ946pmBrPngAEHBFdAXVOTrjcm0fPEN8uutZ8q3Lfhx/gU2DdBT7W5lqm6/RtNLvTg7ZjvmiS7s2hpPXnYgRdoc7tZyI/iOngY/5eKd68LFzl7EVytFV+rD+b1xeFlqcDfnMuHF/SmSFOqPasLgrVoKe99iXWl3Jj+9kX69h7Nr1WluLa6Mg8afq36n8bg0gJef28mi0tGstUVxPb0rLunFdGrsgar5ESoq7Vj4xjHGHWrMjp3xvO83kea607w+rBI+HWLo8p4De05puXKxAlP2uTB1vxOVKofi4KDHLzMZw3ffcm3HTua91JiRTuvJCu1K27BSJvcJpLiohE2rtjFz7gv8sGILzXJi6X7zBG89+x5tZ73DxSIHjixdzZiKjmxPM2Lo2Ydx00fwTvN+9Eu6SFjFADamm5lVzQWn40v56olM/H080P60hTa+Og5mm+kZqOdcahYlFsFLp8JRBRUd1dhemY7tzdcJ0JfZ9LUIFzOKqHFsFzffnk1lYzI9bq+i8uwZ7N20n5ZTx7LfrzK+ejVmm6BW4E5eKX2SLrEksCkR3//EmgXrqbZmGWE/riNmyjQmehj49q6RDt4ajl2Kx1kDtc4eJi05g8Gjn+Bi/dbUWb4YJ/c91PBMJ/fL5bhMHovHmRPoJ4zCOzkejVpFXmYO3n5e3LoWR406VTl7/AJPjR/Andt3admxGSgK1y/dYvqORqgHrmPyrOEc2XMcw4ka7J/szvJJJ6lKf9L8t2Pd0oP9K24SEOlG2w+MGO/4outwhGFvdkDf9RBTd0fQ0fcWkcGOqGtex1epSRYxaHHEhgUn/LFgwIoR4+VQrq3RU7GmH9GTiij0OU8FWnKHfYTSGsGKN1UxUkC87KRr4jNEfL6EqjHVCaEVp5hLHWUcJWRwRb592E3EA/LQRgiNgFsicltETMAaoPd/XPw/4JGajJSyw3YHAt//VfdMuJzBqw13IZdroYmvybPRq/DL6kTyphAmVFtOyI1xbH73Ku/Xv0q1W2/x/bKNZHuG4dBNjxo9YUoXjh8+RsWIEBz8ypa7uRBQdnA7CrX7uuNYqZCYN6vxafPbuGU2IGZrHu26t+bUobMMGNGX9JRMnFycCA4NxNXVkS7eVxjR3oOg0EA2f7ObiTPGsGrxGpq2a0xwxUD2bj3AyNcnc7fHNjyVKErOVSLm7BUG9hzHRssWTo9swPqDJWyXSKJemMztHsVs0Tdj19w04tZ6kBXpyZkenmRHeHJzvQc/L0yjad+q1JqehvPFbiyoU8CZr0s4MiWYpbPW0Kn2GNK0MdSaUIOoGhGsXvw9014byer393JjcSg+1mhya6/joz1j+WHtDmqu/ZThNb/iYu1snt8RSNKWYCLPGZnd8DqjxnXj/JKv6RJziCvxxbRo35CW80/Sbk8oG7Iq8HNpNAPWK/T/XqFyZADTW+YR4Gxi07MODHTdSsPuPYjJcsFgtNAn2orq5Nd8sfotLp6+TMKdW8z7aDh9rz7HxEqZdOvXkVmLdxHerCl1GlRn94CRNC5KpVc1Z/rlfcLTwzsRVLMKixNKmR7hyOWsQjqFzuFurxWsXbIWzxNHyDXZcFIr9ArUM2HPU/yU8DLFKWmQm0uwxkbZwQtQ1ZZJQN4N6v3wNXfGPkMzKSDn6k0+KN5Jg3PzmTS9PymJqbj7ePKM+SBf3XyF28VWwhJvEDT/A/a+NZfnzHf42LkWrWa/QpCbjkNfrWPK6J583WcUdc4fIuzcEW5NmMILqnRWzVtBRNVw0pMzsI4eTp/Mm9z9YAVDPHaQGnsbb09XdBoVSkEBbh5lhwIl3UmhWu0oEm8n02dYTwpyC7FYrARXDOTbxWt45pXRnDlyFl1SdeKWhfHNxz8w/sWRrHp/J5UqVebJeTW4YduA55ExLJryI1E1Iqne0QtNZDI9Fmnw8wmmOF1Y3CSPmmkdaKwc4b1ZjTFTTAANyScRX2qTcrUYS4pn2bMDdKWBqHWCIgrOBJBiOkiE0g0VZRsoVai5wTpaMot0LnDDPZ0b1V+gV9evyd1ZBe/U9kyp9S2OyXUIUVr+VU3HbxFBrNYHCv+GYODurz4n3Yv7Z5oqinJRUZSfFUWp8bCK8c886jmElkC6iMT+Ki5MUZTziqIcVJQ/rm1FUcYpinJGUZQzmZmZD3xDvUOZx0mto0Km5SphkWHcWO7FV+9spNeQrtzeY2Pjih95ac6LnDy/h9ux8cxa9Co/b96FxuCBDlcG7M/k+VWdScmOw2wtxVHx4egsPUdn6Tn1ngvL+6TSZ2JLxpwFbZE/B18vpVWUgm+AD5tWbaNb/04c3nWM6nWqcvtWMosNo3n2o/M4uTjR58lufP7+Vwx9cTTZWXmcOniGiTPHsnLhGk5Nq4TLzV7Mf/E7egzsTOy1OJa2y8VX/QLrVmwhvFoEFod8AlsWMuD5Npzfms6VL90BoTgLUFTELHHl/NY0Bk1vTUDLAlSuBkIqVWTNl5uYMOVZuq3OIcuSh8PFDrwzcCW9Rz7B8nEuDChdzMQZY9my4DjbpxdRXRlMcrWvmH2kN53eFdKUYyTdXk5CfCa61KpcCThPxR69aZr5DRsnaajUWuGTo46U6HzRGW3oQtqRPGEyLmOHo9M4oNM6UKuyJx6qQiyp1zGO68+PE6wUhAaxJzmQqJR1KH0/wpZ2g+KLu3l3xfO4jd1KQD8HlDr98I9ZxvB2LkRUDeNMnZbYOnfF09sD0Wi5km9EExDJhHYa2p56hQEBWvrdXcOon/ryUZSKfcc3cOfWHeYunYH5ys8EaSzUKY1DW5hKYNVmxO45hPWZcfgV5+Lo6ICDo54ZCYt47fgE2owdTMnCpQR27oCh1MBPiYEMa7aR5X7V6NqvA4fnfUGH4ptYU24y+NB6Dj83E093F7oN6MQXI6YzVtKYLBt42ms/E2eO4etPvyWqejhda4Wy3C2Knq88w5X1WynMK+Sl96ay4ZstVK0WRmpyOpc2FOFyuyUZyRl4+nigoMA977FuHq6k3k2lXY/W5OXkI1YbIeHBrF22genvPkt6SgYZqZk8/317itp8S/PoXvgF+rFh5VYmzhjD/p8Ocf5bI+qfB/DGoC8ZMKovNquV1a+eotveppSak6mUW4VuRbt4alhnTnr8xKFJdSl0A8ViQq+4oUKFv6kJy7pncHGBG0fe0nNsjp7KjX1RexSTbY2jzcUmdPzoLP55vuhw5TbbacpMsq2xnL1wnKjkKbzYYgMXc7zoMagLC19eS8K6AMKjwki3XCo/S/svRwTMpgcL4PNLW3UvjPvVle53gs4/F+ocUFFEooEFwOb/SJn4DyoERVH2KIpy+T7h18OhIfx2dJAKhIpIXWAasFpRFLf7XV9ElopIAxFp4Ov74KsMFFXZblgnbwW/yo54+Xpy+2YCUTUj6TknEOfx6xgz4ylq9XFC238zi45P4fbNBFZNuYKydTBbvzhC8h53aoa24vuXL7OkloKzLZiMMw5kndcTWTWMkuJSHMy+ZB/35uLeJH6a5kDYne+Z+vZEEmLv4BfoQ1CYD2Fj4mjSMZqN325j9LThxF69xakjZ3l5wWjWNOiK8YkBDJvyJF9+vILwqEq06z6cKfG1qTdsAI1bN2Djym30GtKNqz9eIi87n3HTR7DijV0sqabCJb8m+Tn5VIyoQMI+FV9EC4mHICS8ArnZebgXRLO4qsI3b+9k7LRh5GTkcv5CLtqiKbx8qhmOlgFEdRvAHK/auPYcz6GCanw1byUjpz5FlUEG4thBpaRRFPidxOCchGnVML6/WUz9xfOIu3WTYq9AVA5ekJtA4KBXMDXZyfQLoew/mczZghBKQv2Y2HgYAyvvQ42+zAWIRxjTtnuzcF0s3h4dqHRTh8vFPbz/Zh/MCWe5dC2Dw5FvMuqln3DSe1HDcxSjznZkbe2XUAKrsWFPIn6BvjhUCKaSj42vh+Tj6utKulsk0+sv5nOXjoS5O9On8ib2NNmKV/P+hPhexnHwjyw+8TxZioUhp19jtfMJVuZ7cii0N0q1zly+cBmNVkNwxaCy40edHPk+pS4dF7sQ6qTG99YV0s5eILBCAD988yOT6jjQrc4ourweRFAlHw40yOaT1DZsWrmVcS+O5OqFG5w/cYkJr4xmldqfzUF98Gg7iqUffk1U9UieGNqLTye+SVN1Mc2bh/LT+p/pO6wXpw+foTCvkPEvjuLnH3ah1WuoUacq+bmFVIoMKTvRrOy/R4epQbRdmEvjtvVRqVT8uHYHo58fRmZaNolxSXTt15Hvv/yBSLdWmM/U4o2h8xkyrj8BFfxZ/ukqRj3/NNmphSx/dTcTXhrFwR1HSE1OZ/Szgyk9vI6uu6tReeNRakR5o3N04pPoFAKLn8V101p6fufKnsVxZB/3ofi2K0aDkbCoSqSfciDnoiNOhlA2D4Mt71/GKagzB5P92fTDaaoo/cjgEgYlD8cfx/Bm93UUXwngiYEDWfbxCqJqRBBZPZzrF28SGBKAd0WHP9ssPVxs1gcLkPVLW3UvLP3VVZKAkF99rgCk/Po2IlIgIkX33m8HtIqi+PwnivQfUwgi0kFEat4nbAFQFEUDPAGs/dV3jCKSfe/9WSAOiHqYchUXFpN6NxXHrKooQGlJCf7Bfvj4e/P9KxcI0NSlcbNGDK/9Dt6xTxAV0o15n60hqlZlOvVpx/7NJ4n51A9XpQI3LsUSHFgRtVqNh86Em9ZI1TpVALh7JZdz7/lwcMMFbkS/Ro/5FpITUuk7rgOaXj/x+o990Eel0O5dFcOf788XHy6n37BejFnQEtMTy3kmIp+OHgoL3/mCFh2bMWRiX2ZPfJuG5lzGTBzIO89/SN3GtRk/dSDtUz7mg7FhRDeuxfkTl2jSugnZGdmUlhqpWjsKm1mF2MBmVlG1dhSlJaXk5RTQoGkDzh49T+M2DYl6awaLvGvSWtORyHW7eHfAFMZOH063iCx2RH6EttNQmrVvzMJ3lhKmbYf37R481/grzDvb4HmzK/NfXsaYuGPw9TIu7kjBvLEPL7y6l7zIvlysUECxZFLLNIEde67y5Y2qnNiTw5YnjVhiKqMvMqErMqDVaakYGcqNi7G4KaF4bHZh3uIzmGv25f2rjXl1zlpq9ezDhA/7kNDoLSqpG9HAQ4+r30LODa6O0TGAkpIiBtd6nx4+tyA3iXaJp1HmvkeJyYrRO4LTA8PIVK7iq6rHZU1rhteag29cf6p5NuWFy8KkTvswRnRi77wVfO01HMUzhLqz4xi/OQxFUXDXGnHXGqlSuyoGi0L+rXiCNqzmzLY9PPv6eJLupJC4+RQ+mW34bPxWnpnbB214Mp3e1/HUpL58/v5XDBjZh+btG7Pk/a8Y7liEc4EDvYZ9Q+suzRk4riezp8+lQb1qTI4Usuq9zuQNdRn+fD9WLPiOek2jqRodxaXTV2jduQUpyekYjSaq1amKovqHQqhaN4r9c8qOia3XrA6nj5yjeYcmRNWK5Iu5yxkzbRg16lZjev/3qWEdSY1aNZnz4scMGdufpm0bsWj2MnoN7USfoV1Z8uFyuvbvRLf+nfh87kr2RjxPXG015CdzucII1n23m279OnNozXV6LFSIr/cah3+4TMzHgSRczkABqtWJwuzkgtHJBQdHPSFhFbh6/jqKb2WWXQtj57YjVDJ3x52KHEieT6umXej7dE9eGvUa7Xu2oUHzurSzbuezEe54+nhQmF/IlqEa1DGNH2bz8OCIgNXyYOFfcxqorChKmKIoOmAwsPXXGRRFCbhnXkdRlEaUtdvZ/4FSPVKTUQfguogk/RKhKIrvvVl3FEUJByoDtx/mTX0DfGjSthEqVyOZXGHyu8NJTkihqKAYvcWb5vHtqXrkOfr3bkkdt8G8FGOhZNZ7zF0+i5MHT3M95iZ9h/YkNyuPooIimrUv+0E+2yCJZ+uXrZ338HLn5uVbdOjdlpuXY7GodLTq2Ykv5i7nycm9cNZ78smTu6iW8iIJql0EDwnlrbXzWDRnGRc2ZRF6ZwTHpy9g3VufMXhcP558pxEZHecw8IUmTA/TMr3jcCKqhfP8rEm47H0LB72Gds+/ycqFazCbzQyf/CQXT8dgNVuIblQLRVFQa9SoVSqiG9fGrKi5kJrP8ClPYjSaWPX5WmYN68D7t9/BZdM0po/oTMhTA5l63cALlfRozjVi+qDZtO7UhCFj+5ERuQ5z8DXGTh+Ba4NUUqovZ/bSmVhKStmxfhevrf6YTWENyfarwd26Exh9sjWZyQtJTfYh9no8nfq040ZMLAVX3QkLC6fFNwk0W5UIQKMJw8ju1Z88K8QEPs3m3XGcOXqeD1e8S+7rs3n7joVBw4bgk9WKsU1eY3DOTXz0UHQnmwqxh3nh7YFkcZmMYIUzU3uRaDQSc/oKr1dKoWH4HMyU4IQv5twZzLCE0Kr/E0S7DWLdwKG0m9qNd6P9OLb3JLFbdzKo9C6ZaVmcWlJKgLWsnqc1SmZyvWSq1o7C3dON2Cu3aNejNdcv3sTV05WOvdqy4K1l+CX2QXLcWT5jN1XTp5Gg3knF5hreXjCTRbOXUpRfwNvvDOX87E/YOGcRg8f1Y8i7Dcns/D4Dp7di0ozRTO47k9x9kXRvPJEYj4/pvcSBVz95iRULVmOxWBg2eQgXT17CarEQ3aAmalWZm3BFpaBPrEXcPjPnj11mxOQhlJYYWPPlBt6aPwOzycL8d5bwwjuTqRAWzEujXmfya+Np0aEJb0x6l9ZdWzB4bD9svb6jyvO3GDNtOAmxd/jiw+W8vfBVHCoZOVfhIGkvzCOpxR7Cor3pMbgrX3/6HR0G9CKnwEDcjQQ6923P9ZhYPH09yw4qGjqKvIFPA9C4TQNys/MoKSqh15BuXD53jfMnLtFKNZsv2+TzwYzPGDZ5MO16tGbG2DcZNKYf3j5uJKUWkJWezbBJQ4g5c4W0pPSH2Tw8MMLDmUMQEQswGdgJXAPWicgVRVEmKIryy6Ka/sBlRVEuAvOBwSLyH7GVPUqFMJjfTya3Ai7dK/gPwAQReajbEBNvJ7F9/S4styqSMqcb104kcvbYBYZOHIxvoA8/bjyI2sWbqbOeZfF7y0h6fy6vVXPH39+TdfMWEVjBn75P9+D65VhQFOo3iwZg+k+evPiTJ27uLnh6e3DzahxPjh+ARqNmzXcrGT7lSarUqMwbQxdRPft5rp2NZ/NlVxoYf2DW1XpscQvjuTefIcg/jOebfU2rDq0YNm04td+8RaLvOsKVzkwYPozwHwfx7vAKPPv6eI7sOcHEz2IpavkKRTo/flixmTqNa1OzfnUOX09GpddRuXokigJqtQpRhCqN62Be9g2HC4R6TaOpUbca677aRIDNSHS15jwz9wpnjpzj2ReGMjf/e9w+Gkz7wNH0GNSF6Lj5TKl8htqOQ9Bda8qXH62g6GBVKsVPYOOK7Wz8ditfbJ7P8Qu3uGXTMmPZO3w0dQ61km7Sw7sqixPN8OXXDBjVl1tX4/D29cLZ1Zl7mzcAaN6uAe/67Eafeon+I3rjG+DNuk8WEhDozWvV3GhT/Rmu2L6locNkPD092bFxDzEfBxKR3oP4w4eIPx5P6pweONsCSWAXjbtH0nNIV7JL7pDOeWqohnJytiuHN+/B21HDi+9M4tO3FnMoQ0uvjz/GT2Nh/fwlhIQF02NQF/J1saScAW9zHQCmbvXkpe2euHu5USXUhcDiSwydNBiVCrYu/YaRzz1NZPUwFry7hOlzniP2Whw/LbhAo7uLeHfQOnZt2cuzbz7DpG5edEr9kPGjWjBs8hBqvnmdRO8NhCtdGDxkOGN7P0uNutVp5DKBtR8c5POBl+jVYiIeXm5sXLmVBs3rUi26Csf2nkSj0RBRLRwUBbW67PS5qtFRKMDRvSdo1LoBVWtFsXbZBipUDOKZGaM5tPMYl85cYfJr44isFs7EAdN4ZuYYegzqytK5X5MQe4fqqqfgXEOWffINdRvX5rm3JrLhmy18PmUn0TfnsX/zSUpd7jB75Yt8+Mqn1KxXjacmDOTLj1bg7OJM36E9uX09Hl9/bxydHNC+9w7aTz4AoEHzuthsQty1eIaM64+njyfrPlmIs82HV96fxqXTl/luyTqef2sint6eJDnu4NoT9ciu9jRnj10g+U4q/Yb3olWX5g+zeXhwRMBmebDwby8l20UkSkQiRGT2vbglIrLk3vuFIlJDRKJFpImIHPtPFeuRKQQRGfFLgX8Vt+FXBa8nItse9n2jakYy/qWR+AX4sHrJevJzC/hyywIO7zrG5bNXORBTgmbsBmZMXUBRUQkdo/zp4q/HdmA+nzY/z4JvXgfgwE+HMBmMVI0uMxGpNDpUGi1qtZrgikFcv3gTi9nC3H1jqPXRadyqFdK5Xwd8nazUSl3NupitrHWowLaLhbxiTaRj4kU+fWsxAUH+TH5pKJqOnZgT3BhXc0cipAdZG6LpGv0MJeGdaD5yMvE34lk+71tq9RqCc5P+vDttLmaTmdc+fhGLxcrp5l2psOJrXNycy2zLStkqKHetiqgP3uDii69jtVp57ZOXMJSW8N17c3FrNoSavQaz5IPlpG3fQdO6LSiq0Ztutxyo/8pz+LXqT5ZfC0ZGLCL/uhOjXhmLk8aTZ1ssonPf9ny0YyInzxxg6xsf8VM1hQ2vzkVls9HTnEbWmfNcHDKCqda7YDGRFhtLWGQwKpWKOYd8ee9wmUm0ibMRN0MWp1KzURSFz795lY8an8F2aDHdA/RUUjVmV0IX5mbpWLlrKVnp2Vw+e5UfD1xh8MGT3EwvZfUX67AkBGL6cgQltz34ful6bu4yUDNmHuvnHuHyuWsUHj3G9w08mD32DcxGM/X69KDmE09g2/sJC1pd5LOvy/b+XE89RP9NFmo1rQyAWqtFpdGi0WiY97QjDdVnEZvw/edDeDFgE1EehXTs3Q6r2crOTXtZc+BrflixhWMHjvDZvqk0a9uYz97+nER1BIamk0gu1DF35ny8cpsSIT3xUapz0H0CnQa0YvKr47h+6TorF66hbcNBRDl3ZtbUDxGr8NrHL2KyCRevxhNRozKOTg5IpUqYPvgECQjEy8eTkPAKnDl8DpvNxqsfT6eosIhlyz5j8Nh+9B/RmwXvfEFmWjbPvDKaVp2b83T7sTRt24i+T/WgXtNoxlZdTOkdV0Y+9zRuHm588vpCej/ZjYkzx7B1xT4WTfmJzoXfcZMfqNxVTY9BXUhOTOHCyRgmzRyDodRI7NVbhIaHlvln0qjRqsuanOp1qmIoKWX/z4dRFIUvvpnB+/WOYzu6jG4DOtO2eyvSUzJY9N4yvt29FLfoTDLM1zi+7yRfb19M0p0UvluynqKC4ofdRDw4D8dk9F/F387b6cVTMXz+/ldUqVWZ3Qfn4mzKYOnWQ6xctIYdMRtwNWdi/fENCnILiKwRybRZk/lx7Q42ztvDZ7OnUqFqNcRqZt+2/dRuVBMvH08Aei9yRrmnXzv2bsvRvce5eP489Rp3JvHCWSa98B7fblvBoIo3sV7ezs67a9g8pDefvzSfDbuPs+PkchzfG0eLoCy0lz4kUdOafoH+VDa1o3/0IDr0bE3rbq1Rd38e2fs2deKOMXDUICa/Oo4dG/awd9sBxrwwnLCoihz4+TAl49+l//vPAUFlBRfKe+E9n2jHvDcXcerQWZq1a8ziDwdQJ34BhtjmTHltPAqQ1WgZp4NbUyPwTdreLOHs4q/5ZN121h36hr5PF+JWuwavZ7owK1zHK5+Np3X3uuxyHEHNCa1Z3Wk5W77fzsmDZ+g5qCtdh/Wh3967NBs9mG7Na1Jy4yirel5D028sALeLPdHqyn6Kiqsfn7ZYyq1bSeyvb6FCjdrYciYhJ7/B5hNOw1pT2W0pwlhagHXbXOYvmkiuzYPudfuj02upGBHKF5s+Iz42kQVvfUWVtdX4fMM88nMK2LvtAGu+3MDOy5tJT0nnvZc+Jj+3gFr1q/PsGxOwnl2HXNyEqt3zBEdVxipm5vbZT93G0QxeVba2wcXNGUfHssnMnep+vDv/Q77sfInotn2IuXGaDwZ/wFd7VpKWlM6hnUepUCmI9Ye/ISFsCbfYSNN2y3jujQlcTyhgzIxNfPTNbPoO7UGYrSv9qw+j/8QO1J3SmgFzp3FK5lKsvsigMf2Y+MoYtm0+wMEdR3jmlTGEhFdg16UEsp4azTN9G5XVsVqDODiAuuxZ9hjUhQXvfMG5Yxdp0KIub2wYQlGTtdwpacKzr08ARWH+25/TpV8HXnr/OUSEI3uOc2zvSdYeXEHK3QycXJxY8dkq3lowkymvj6du49r0bzGMLv06snrfMjat2op+6Bn6v9ibSgWtGdJ2FK06NaNT33Yc23uCnKw8OvZuA4CzqzMurs4ABAT7Uy26CifO78Ym4wmpXZeCtElMeWELw16vxowPp/Heix+TcjeN2S/MZfiUF9A76Jm5eBCuHq5UjKjAl1vm4+553zUn/3nEhpgNj+be/0lE5LEP9evXlwfFaDDKmmUbxGgwimXtZDHPri0Wi0WSEpJk3fJNUnpyrZhnVRNbVryIiKxZtkEmD5ouUwZPl5KiEhERsR75UuKnVZWcuCvl1z2cOVaOZI4TERGz2SwLz3aXPebnRURk/0+H5Ml2o+TFka+JyWiSAz8flgb+reXnDbvlyJ7jcv7kJTEv6SXmhZ3FlpskRT+9J6biAulQrZd8OPNTefu59+TEgdOSlZ4trcK7yIYP3hPLrg9EROTonhPSwK+VzJr6gRQXFovNZpORg16SZiEdxGQyl93/xBWp+/YPcvjMdRERMRiM0iS4vYwb+prYbDaxGQrl5s7F0nTnbTmRXnaNs5ZFknXiLTG/V09sxTlydO8Jeef5D+S9Fz+WTjX7SIHRIh/EZEtKqUW2Wp6UHZZxkm67KBdijsuP63ZIA//WcmTPcbGZDGJcM1ne3bVfDmQaRERkXJ8pMqVVF7FZLSIiMqzTOBnVY2L5s7xwNUEa+LeW1V+sFxERm6FQzN+OlKP5z8tN65ayuIxbYp5VVYwxG+SGdZNkZKeIyWSSZiEdZOb4t8VQaiirZ6NJpj71irSO6CoWi0USb9+V9V9vkvVfb5Ymwe0lOTFVREQsx78W86rRYvlujNhMpSIiEmNdKYti20hKdmy5bE93HCtjek0pr+f5Z7vKPvOLIiKye+t+ebLdaHl5zBtiMpllz9YD0sC/tezcvFcuXT0hmbbLMrDVcBnYarjcjU+SeW8ukoK8QmlXpYfMe3ORvDlljpw+ck7SkzOkVXgX+fr7T+SC9Uux2WxyIKVIam2Kk3c+XCklxaVis9lkaKdx0iKiq5ittrL7b9kvjQLbysmDZ0REpKS4VBoFtpGJA54Xm80mRluhbL0yW5pHtpJzxy6IzWaTj16bLz9d+1DWW3qI0VYgh3YeldkvzJW3n3tPukb3k4K8Qvno9QWSnpwhPesPlJHdnpGzxy7Ikd3HZcvqn6SBf2s5efCMlBSXyrShM2RIm1FybN9JEREZ2e0Z6VSjj1itVhERear9aBnf59nyZ5mQfUG+M7eWG9ZNIiJSkFcgEwdMk4n9npfNq34UEZHYq3HSKLCt/Lhuh6xbvklSElPFeO/3++aUOQ/0n/9ngDPyf2xzXD2ipEPf/Q8UHsb9/qrwyAV4GOHPKIRfGuODO46IrSRP4o7ul7vxSbJ9/U5p4N9azp+4KDZTqRTkF8rC2UvljUmzZWjHseXft+UmiXlOHbFseqm8QRMRubr8Gbm2/B+N2oEbK2TggE5y+dw1ERFZvXS9tI3qLl/N+0bSkjMkIfaOTH3qFWlRqbNYrVbJPrlNrDf2yk/rdkrj4HaSEHtH3n/5Ezm865jYbDbZanlSThg/lZdHvyEXT8WIzWaTVZ+vkeahHWXOix9LdmaOiIjsjc2QmuuuycKd58tl2ZuQIzV2pcnBu7nlcfO2n5Oa62/IobhMERHJMFjlrWMJ0iy0o6z7amOZokg4JZZ1z8qc6R9Kv2ZPi4jI/u2H5MMZn8qta3HSOKid7Ny0R+7ajsjVzD1iNpulaUgHeXHU65IQe0esuUliObhIzO/XE8up70RE5MKpGGlRqZN8/emqcln6NnlSBrQcVv7ZbDbLgs/fka8Su0mxLbM8frtllBwqeF8Wzl4qRQXFYjOVSqrtrHxnaSMJtn2SUGyRfRduS0FeQXljfHTvCcnLyZdLtw5KoS1FtqzeLg38W0vMmStSWmKQPJNVPr1VJMUbXxbzsv7l9yqwJcs6S1c5Yf1AbDZrefz0rv3llb5Pl3/ed22ZDOjXSa5fuikiIisXrpZ2VXrIV/NWSkZqpiTE3pFJA1+QNpW7icVikR/X7ZQje47L5lU/SpPg9nI3PklmT58rR/eeEKvNIpstg+SUYYG8NOp1uXz2qthsNvn6s1XSolJneedMiuSYymTZvXmf1PdtKV9+vKJclp2b9kp9v1Zy4sDp8rhP3lgo9Xxblselp2TKO9M+lKYhHWTjt9vEZrNJmu2cHLG8LW9PfU8GtRohIiJ7th2Qj19fIDcux0qjwLayd9sB2ffjQbmwe5eYjGUN8szxb0tC7B25W2yWJeeSpHVkV9n8XVlDfvbYBWlRqZN8u2hNuSy9Gg6SIW1Hln+22syy/vTb0qN5N8lKzxYREZvNJgNaDpN3p82VRXOWSklRiZSWGOTYvpPSwL+17PvpkOTb7sjFG4elML9I/n94KArBvbK077XrgYJdIfwXKwSD0SSrNh8Wg9EkIiJdavWVkd0nisVikWsXb4jBWiB3bPvl3Inz5T/AXygqKJbn+k2UzAUDxZZ08TfX7X4kU3oe/UfjdTc+SSb1GCl3P3u6vMcZdz1eGvi3ljXL10uq7awkxN2R04fPyuov1kvDgDaSlJAst28kyKzny3r7509ekpZhneXSmctyzDJHblt3iohISVGJtK/aU2ZP/0jeef4DMd0rS0FeobSI7C6D3/lOCsz/aMT2bNsvdQPaysEdR8rj8kxWGfDmSmldpYcUFRSLSNnoadbUD2TW1A+kY/XeYigt69Fv/X67zJr6gZw/cVFahnWWmDNXpDC/SN6e+r7cibsrCbF3pGFAG1m3fJOcOHBaEm4lyqlDZ8V4eJmY344qH23ZjMUS/8mTMqnH6PKeuYhI74aDyxXOL2TaLssOywTZbXlWzLaS8vhdW/ZJQ//WcvFkjOzask8K84sk23ZDbDarDD6VKx2OlDUshlKDfLdkrZhMZc/mB0vvsmuZzXL90k3Jz82XPVsPyPGsUqm5N1MOZBrL71GQVyCThk6SzZkTJNt28zdyGT9pI4aFXcs/J9xKlCfbjZaxvaeI0VB2jRuXY6WBf2tZt3yTnDp0Vm7fiJfTR87JyoWrpVFAG0lNSpNb127LO9M+kJLiUjl95Jy0DOssVy5ck6OWdyXBuldERArzi6RdlR7y/kufyLsvzBWzuWzEl5uTJ81CO8qwzuPL605E5OcNu6Wudws5tu9UeVxudp4MbDlc2lftWZ63tMQgbz37nrw5eY50rtm3fCS58dutMnv6R3L6yDlpFd5Frl28IQV5BfL21PflbnyS2NJviPntKLGeXSvH952SxLi7curQWfkyrkBq7c2UpJKyDlJRQbGM6PaMDO04TtKS0stl6VFvQLnC+YXzJy/JsM7jZXzf56S0xFAev339Tmno31oun7squ7bsk6KCIrl28YZYrVbZbhktWyyD5f+Xh6MQIqVd958eKNgVwn+xQtifaZSaezNl/70GIObMFbkeEyu3bySIiMgN60b5ztJGsm03JTMtS2y2suH4rWu3ZdGcpdI1up/s2Ljnd9d9YvBM6Tfktd/EWc6sEePc5vLNR0vK/4wJtxLltnm3fGdpIym202IymuT6pRvy5cffiMlklp837JZmIR0k8XaSJN9JkeeefElS7pY1nrbCTDF/2EjMZ9fLq8/MkuO/+uMbrTZpX7WnDO00rnxU8gt7tu6Xer4t5eDPR34Tf+n0ZXmy3WjpXKtvuVIRETm865i8Meld+WHFZulYvbfk5eSLiEhSQnK5PPE370jTkA6ye8t+MRqM8uVHK+TG5VgxmcxyaNexMmW6bb/Ysm6LiEhBfqGsnLtYjHObieX8xt/I8c8jhF+Is/4sm0z9xXhwntgybpU9A5tNMtOy5PLZq9LAv7VsWLm1LO/1eLmaVSQx+WXl2LutbITwyzPKtF2WjJJYib95R0REvluyVhr4t5Zb125LuuEfyvPmlVuyaM5S6VKrr+zesv93Mr3Yrb/M6Ptb5bX2q43SpfYT5T1aEZGE2Dvy49qfpYF/azl95JyYjCa5cuG6LPvkGzGbzbJtzc/SLLSjJCemSuLtJHnuqZclPTlDREQyUjOlfdWesm3tDpk5/u1yE5CIiNVkkDaVu8mIrhPk6oXrv5Fj98adUt+3pRzfd/w38edPXpLBbUZK97r9f1PP+38+LG9OmSNrlv0gnWv2kYL8QhERuRN3t1ye2Ktx0rRCe9m//bDYTAax7F8g1rRrYrOYZd9Ph6SBf2vZv+OoJBSXKYP83Hz57O3F0qlG79/9T3o1GCxD2o763TPd+O1W6Vannyyas1QSbiX+pp7Pn7wkDfxby5bV20VEJM92W7KsNyTbdv1313lQHopCcIuQdl23PFCwK4T/YoVQbLHJ8ospUmyxlcd99vbn0iigjeRm54nZViqptjPliiDlbqpcPndNPn//K2kc1E5ysnLve93hXSfIqO4Tfxf/S8N0ZPcxOX/ykoiImG2lEm/dLRabSWaOf1vaVu5efr/Yq3Hy6oRZ5cPh4sJi6RrdT75bslZsxuIyG3fCyd/c41CWUersy5QPv/rpN43HL+y+pxD2/3z4d2nH9p2Uj16dL02C2/3G1CAicvrwWZn61CtSWmKQFfO/k+51+5f34gryCmTm+Lcl7nq8iIhYLBZpFd5F3pg8W4wGo2z/YVd5XlvCKTm551C5qe6fGdZlvIzuMem+z9VWkCHmWVXFcnCRxJy5Ut7jtNlscuLAaTGUGiQzLUsaBrSRxe8tK/9eUUGxrJi/SkqKS8vj5r76mTQKbCsF+YVSUlQipw6dLX/uyXdS5Mr5azJ/1hJpEtxOCvIK7ivP0x3HytjeU34Xv2PjHmng31qO7TspF07FiEjZSO7nDbvFZDLL9BGvSfuqPcvzX4+5Ka89844UF5Z1FArzi6RL7Sdk7VcbpKigWJ4d8mL5dX7Ben2PmN+pJlvmfSKnj5z7nQylF3+U9W8MEtPNg79LO7zrmMx9db40Dmr3u++eOHBann96Rpli/3iF9Kg/sFxx5OXkl5uGRERsZmPZvNvWV6W0xCDbf9hVPjI6e+yC7Nn2D1Pd755dhzEy7ldzCL8mNSlNGgW2lZULV8vFUzHlytFqtcqJA6fFaDBKsS1dVlvaSIx1xX2v8aA8HIUQLm07/fBAwa4Q/osVwvF9p8p6jvv/0btOSkiWLd/9VGY3t9kkPeUfpp/Jg6ZLm8huYjabJTMt6w+vO3z8ezLymQ9+F2+z2SQ5MVXmvbFIGvq3ltzsPBGR8l736SPn5NvFa8vzJ9j2yTpLVym0pYiIiMlklueffkUO7zr2u2v/sGKLtK/SU66m5MqMKwWSbbT+Lo9ImZmlnm9L2b/90H3Ts9Kz5fVJ78rVC9elbVR32bL6p9/l2b/9kLwwbGa52eJO3F1pFd5F9v34j8bnm4Wr5dzxC2XlLs4tey1IF/NblcWy52NJTkwtb4B/zfCuE8onau+HrSBdrBazNK/YSaYNm1ken56SWV5nm1Zt+40Z6pdRyq8bvztxd2XL6u1is9nEarVKRuo/6nnCE89J+6o9/209D+007jcTo+Uy3qvnD2d8Kg0D2pT3tn+p55MHz5RPkouUmURaR3QtV3BGg1Gee/Kl34z6fuH7L3+Q9lV7SmHCFbFserH82f4z25MLpeaedDmSUXLf9IzUzLJ6Pn9d2lbuLtvX7/xdnj3bDsiLI14Ti6Wsx3/7RoK0DOssh3YeLS+n5fASsSWe/U35UpPSpIF/a1ny4fI/rOenO46VCU9Mva9sv8hnMpmkaUgHeXn0G+XxxbZf6tkqsdatUmRL+8NrPAgPo4F2cakkbdqsfKBgVwj/xQohNztPPpv1eXnD/M9sWrWt3JQgUjYX8EvP/l/x6q7D8tru3/d+fyEzLau8d3xwxxFp6N/6vtfNtt2Qg5aZYrQV/j4tI0e61Oor23/YJSIiZ46el+kjXi239f8Re7bul0ahLe7bO/81JcWlMm3YzHK5tqz+SbrWfqL8T/9r8nPzZdrQGXLjcuzv0mzxJ8pszbEHyxrfa7vFVpj5u3y/0L/50zKozcg/TP+Fc8cvSPKdMkV5PeamNPBvLdvW/HzfvNmZOfLZrM8lP/f3souIrFu+SRoGtCnv+d6JuysX/6lHfj+eaPqUPNlu9B+mp6dkljeee7cdKLODn736u3yXz16VF4bN/M0cwC9kpGZKp5p9ZNfmsrmEU4fOyvQRr/3G3HM/tm87KLWfeF2OHjz7L/MVFxbL80NnyKXTl0VExHL6ezF/0lJspb9/VjlZufL80Bly61rc79KO7z8lDf1bl4+09v14sHxxw/3o2+RJear9mH8pm0jZ7/oXM2mW7Zp8Z2kj8dbd//Z7D8rDUQgVpXWrZQ8UHieF8LfbhxB/M4Hvv/iBlh2bUrdJ9O/SG7duwJhpw6hQqWz9foVKwVSodD9vtL/l9Wtvg6KCDjvvm+7j702rzmW7KqtFV2Hw2P6ER1X8Xb4LP6Xy3kuXWbmriMAKLr9Jc3DUE1alEr4BZZu46jerQ/1mdf6tbJXaqpgSqyLUdD/Hiv/A0cmBj7+ZXf45INifsCqV0Ol1v8tbkFfIxdOXSb2bRlSNyN8m+kWhNBqGElAdRVFQqnb4l/c1my0P5LPy1/UVGh7C6OeH0rBFvfvmjbsWz/df/EDbri2p1eD33oKbt29MzrRhBIYE3LteBULDK/xbGcwmMxqN+g/T/QJ98Assq5+a9aozZFx/QiNDfpevmu4279fai1qeBZx+k+bg5EDEr+q5Yct6NGx5/3L+GrXZjObwAVSTe/7LfE4uTnyyck75Z8UjGPGNBLX+d3kL8gq5dPoyackZRFQN/01aVM1IBo/tT2T1cBRFoW33Vv/yvmaTGbPO/G/L8evftDsVqakMxV+p84f5HwkiYP33ZXnc+NsphKCQQNp1b0VwaNB90wMrBDD+pVF/+rovbvdGUan4bMq/z+sb4MO0dybfN80/yI8qNSNxdnH6XZqTixOL13/yp2XLvqbiwjmFag1VVPr37Uo5jVrVp1Gr+vdNc3FzoWqtyvgF/t7TrOLkibrLq39CQqXcU+eD4ujkwISXR/9heoWwINp1b0VABf/7pgeFBjL+xZF/6p4AikoFDyirX5Avz8+6fz0r7oEQUB10v69nVzcXFv8w78/LppQ9x1+c3D0oqsiWqCLv72ne1c2FKrUqlyunX+Pl4/mHv+M/kk/1J+tZozhSW/nz/8f/PIJYTY9aiIfO304hZGfmcPbYBbIysvELeniHc/edMhGV+v/uCaRGvWosXPfxQ5DoH4QERqI+1YqQnhEP7ZoeXu4PTc5n3xiPRvNwf4qBFQKY/cXDP3p2yuvj0d9nxPRnUULqoXl6+UOQ6B9Ur1uV9j1aE16l0kO7ppevJ4seWj1PwMHpEbusfliIXSH8T+Di5kJwpSBc3Fz+feY/wb8bLj9KAisE8MFX/7FjWP/PtOve+lGL8MB06NnmUYvwhwRXDPqvrucOvdo+ahEeGiJWbKZH6EfpP8TfTiGEhlfgq20LH7UYduzYeawRxGZ81EI8dP52CsGOHTt2/s/YTUZ27NixYwewKwQ7duzYsfMLNsRqNxnZsWPHzt8eEbErBDt27NixA4gVm6ngUUvx0HmUZyrbsWPHzuOJlJmMHiT8OxRF6aIoyg1FUW4pivLKfdIVRVHm30u/pCjKn9he+uewjxDs2LFj50/zcExGiqKogUVARyAJOK0oylYRufqrbF2ByvdCY+Dze68PHbtCsGPHjp0/iYgNm/WhnKncCLglIrcBFEVZA/QGfq0QegMr7znmO6EoioeiKIEikvowBPg1/xMK4ezZs1mKotz5E1/xAbL+U/L8xdjL8t+JvSz/nfgAv/cq+ScptRbvvJBz9PcOnu6Pg6IoZ371eamILL33Phi4+6u0JH7f+79fnmDArhDuh4j8KadEiqKcEZEG/yl5/krsZfnvxF6W/07ulaXS//U6ItLlIYgDcD9vf//s/PdB8jwU7JPKduzYsfPoSAJ+7R+9ApDy/5HnoWBXCHbs2LHz6DgNVFYUJUxRFB0wGNj6T3m2AsPurTZqAuT/J+YP4H/EZPT/wdJ/n+WxwV6W/07sZfnv5L+qLCJiURRlMrATUAPLReSKoigT7qUvAbYD3YBbQAnw5w/yeECUsolrO3bs2LHzd8duMrJjx44dO4BdIdixY8eOnXv87RTCv9sm/jihKEqCoigxiqJc+Kd1zv/1KIqyXFGUDEVRLv8qzktRlN2KosTee/V8lDI+KH9QlrcURUm+VzcXFEXp9ihlfBAURQlRFGW/oijXFEW5oijKc/fiH7t6+Rdleezq5a/kbzWHcG+b+E1+tU0cGPJP28QfGxRFSQAaiMhjt2lIUZRWQBFlOzBr3ov7EMgRkffvKWtPEXn5Ucr5IPxBWd4CikTko0cp259BUZRAIFBEzimK4gqcBfoAI3jM6uVflGUgj1m9/JX83UYI5dvERcQE/LJN3M5fjIgcAnL+Kbo38M29999Q9gf+r+cPyvLYISKpInLu3vtC4BplO2Ifu3r5F2Wx8y/4uymEP9oC/rgiwC5FUc4qijLuUQvzEPD/ZX31vVe/RyzP/5XJ97xTLn8czCy/RlGUSkBd4CSPeb38U1ngMa6X/zR/N4Xwl20B/4toLiL1KPOGOOme6cLOfwefAxFAHcp8znz8SKX5EyiK4gJsAKaKyGPt9P8+ZXls6+Wv4O+mEP6yLeB/BSKScu81A9hEmUnscSb9nu33FxtwxiOW5/8bEUkXEauI2IAveUzqRlEULWUN6HcisvFe9GNZL/cry+NaL38VfzeF8CDbxB8LFEVxvjdZhqIozkAn4PK//tZ/PVuB4ffeDwe2PEJZ/k/80oDeoy+PQd0oiqIAXwHXROSTXyU9dvXyR2V5HOvlr+RvtcoI4N4ys0/5xzbx2Y9Wov8/FEUJp2xUAGUuSFY/TmVRFOV7oA1l7ojTgTeBzcA6IBRIBAaIyH/9ZO0flKUNZWYJARKA8f8p/zMPC0VRWgCHgRjAdi96JmW298eqXv5FWYbwmNXLX8nfTiHYsWPHjp3783czGdmxY8eOnT/ArhDs2LFjxw5gVwh27NixY+cedoVgx44dO3YAu0KwY8eOHTv3sCsEO48tiqKIoijf/uqzRlGUTEVRfrz3eYSiKAvvve/8Kw+XRfc83l5QFGXlo5Lfjp3/Nv6uR2ja+d+gGKipKIqjiJRS5sU2+X4ZRWQnZccUoijKAWC6iDxWLsPt2PlPYx8h2Hnc+Rnofu/9EOD7RyiLHTuPNXaFYOdxZw0wWFEUB6A2//BoaceOnT+JXSHYeawRkUtAJcpGB9sfrTR27Dze2OcQ7PwvsBX4iDL/Qd6PVhQ7dh5f7ArBzv8Cy4F8EYlRFKXNI5bFjp3HFrvJyM5jj4gkichnf5A8QlGUpF+FCn+pcHbsPEbYvZ3asWPHjh3APkKwY8eOHTv3sCsEO3bs2LED2BWCHTt27Ni5h10h2LFjx44dwK4Q7NixY8fOPewKwY4dO3bsAHaFYMeOHTt27vH/AJI9JckPEt5VAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "cluster_data.plot.scatter(x=\"MLT\", y=\"QDLat\", hue=\"cluster\", s=0.5, cmap=plt.get_cmap(\"turbo\"));"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python [conda env:geomagcubes]",
   "language": "python",
   "name": "conda-env-geomagcubes-py"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}